This commit is contained in:
J. Nick Koston 2023-06-05 19:57:06 -05:00
parent 2a1d2f053c
commit b15063763a
No known key found for this signature in database
2 changed files with 397 additions and 394 deletions

View File

@ -2,12 +2,13 @@ import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.const import CONF_ID
from esphome import pins, automation
from esphome.components import uart
DEPENDENCIES = ["preferences"]
DEPENDENCIES = ["preferences", "uart"]
ratgdo_ns = cg.esphome_ns.namespace("ratgdo")
RATGDO = ratgdo_ns.class_("RATGDOComponent", cg.Component)
RATGDO = ratgdo_ns.class_("RATGDOComponent", cg.Component, uart.UARTDevice)
CONF_OUTPUT_GDO = "output_gdo_pin"
@ -46,7 +47,7 @@ CONFIG_SCHEMA = cv.Schema(
cv.Optional(CONF_STATUS_DOOR, default=DEFAULT_STATUS_DOOR): pins.internal_gpio_input_pin_schema,
cv.Optional(CONF_STATUS_OBST, default=DEFAULT_STATUS_OBST): pins.internal_gpio_input_pin_schema,
}
).extend(cv.COMPONENT_SCHEMA)
).extend(cv.COMPONENT_SCHEMA).extend(uart.UART_DEVICE_SCHEMA)
async def to_code(config):

View File

@ -88,443 +88,445 @@ namespace ratgdo {
}
}
void RATGDOComponent::setup()
{
this->pref_ = global_preferences->make_preference<int>(734874333U);
if (!this->pref_.load(&this->rollingCodeCounter)) {
this->rollingCodeCounter = 0;
class RATGDOComponent : public Component, public UARTDevice {
public:
RATGDOComponent(UARTComponent *parent) : UARTDevice(parent) {}
void setup()
{
this->pref_ = global_preferences->make_preference<int>(734874333U);
if (!this->pref_.load(&this->rollingCodeCounter)) {
this->rollingCodeCounter = 0;
}
this->output_gdo_pin_->setup();
this->input_gdo_pin_->setup();
this->input_obst_pin_->setup();
this->trigger_open_pin_->setup();
this->trigger_close_pin_->setup();
this->trigger_light_pin_->setup();
this->status_door_pin_->setup();
this->status_obst_pin_->setup();
this->store_.input_obst = this->input_obst_pin_->to_isr();
this->store_.trigger_open = this->trigger_open_pin_->to_isr();
this->store_.trigger_close = this->trigger_close_pin_->to_isr();
this->store_.trigger_light = this->trigger_light_pin_->to_isr();
this->trigger_open_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->trigger_close_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->trigger_light_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->status_door_pin_->pin_mode(gpio::FLAG_OUTPUT);
this->status_obst_pin_->pin_mode(gpio::FLAG_OUTPUT);
//this->output_gdo_pin_->pin_mode(gpio::FLAG_OUTPUT);
//this->input_gdo_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->input_obst_pin_->pin_mode(gpio::FLAG_INPUT);
this->swSerial.begin(9600, SWSERIAL_8N1, this->input_gdo_pin_->get_pin(), this->output_gdo_pin_->get_pin(), true);
this->trigger_open_pin_->attach_interrupt(RATGDOStore::isrDoorOpen, &this->store_, gpio::INTERRUPT_ANY_EDGE);
this->trigger_close_pin_->attach_interrupt(RATGDOStore::isrDoorClose, &this->store_, gpio::INTERRUPT_ANY_EDGE);
this->trigger_light_pin_->attach_interrupt(RATGDOStore::isrLight, &this->store_, gpio::INTERRUPT_ANY_EDGE);
this->input_obst_pin_->attach_interrupt(RATGDOStore::isrObstruction, &this->store_, gpio::INTERRUPT_ANY_EDGE);
ESP_LOGD(TAG, "Syncing rolling code counter after reboot...");
sync(); // if rolling codes are being used (rolling code counter > 0), send
// reboot/sync to the opener on startup
}
this->output_gdo_pin_->setup();
this->input_gdo_pin_->setup();
this->input_obst_pin_->setup();
this->trigger_open_pin_->setup();
this->trigger_close_pin_->setup();
this->trigger_light_pin_->setup();
this->status_door_pin_->setup();
this->status_obst_pin_->setup();
this->store_.input_obst = this->input_obst_pin_->to_isr();
this->store_.trigger_open = this->trigger_open_pin_->to_isr();
this->store_.trigger_close = this->trigger_close_pin_->to_isr();
this->store_.trigger_light = this->trigger_light_pin_->to_isr();
this->trigger_open_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->trigger_close_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->trigger_light_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->status_door_pin_->pin_mode(gpio::FLAG_OUTPUT);
this->status_obst_pin_->pin_mode(gpio::FLAG_OUTPUT);
//this->output_gdo_pin_->pin_mode(gpio::FLAG_OUTPUT);
//this->input_gdo_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->input_obst_pin_->pin_mode(gpio::FLAG_INPUT);
this->swSerial.begin(9600, SWSERIAL_8N1, this->input_gdo_pin_->get_pin(), this->output_gdo_pin_->get_pin(), true);
this->trigger_open_pin_->attach_interrupt(RATGDOStore::isrDoorOpen, &this->store_, gpio::INTERRUPT_ANY_EDGE);
this->trigger_close_pin_->attach_interrupt(RATGDOStore::isrDoorClose, &this->store_, gpio::INTERRUPT_ANY_EDGE);
this->trigger_light_pin_->attach_interrupt(RATGDOStore::isrLight, &this->store_, gpio::INTERRUPT_ANY_EDGE);
this->input_obst_pin_->attach_interrupt(RATGDOStore::isrObstruction, &this->store_, gpio::INTERRUPT_ANY_EDGE);
ESP_LOGD(TAG, "Syncing rolling code counter after reboot...");
sync(); // if rolling codes are being used (rolling code counter > 0), send
// reboot/sync to the opener on startup
}
void RATGDOComponent::loop()
{
ESP_LOGD(TAG, "loop rollingCodeCounter: %d", this->rollingCodeCounter);
obstructionLoop();
gdoStateLoop();
dryContactLoop();
statusUpdateLoop();
//ESP_LOGD(TAG, "Door State: %s", this->doorState.c_str());
}
void RATGDOComponent::readRollingCode(uint8_t &door, uint8_t &light, uint8_t &lock, uint8_t &motion, uint8_t &obstruction){
uint32_t rolling = 0;
uint64_t fixed = 0;
uint32_t data = 0;
uint16_t cmd = 0;
uint8_t nibble = 0;
uint8_t byte1 = 0;
uint8_t byte2 = 0;
decode_wireline(this->rxRollingCode, &rolling, &fixed, &data);
cmd = ((fixed >> 24) & 0xf00) | (data & 0xff);
nibble = (data >> 8) & 0xf;
byte1 = (data >> 16) & 0xff;
byte2 = (data >> 24) & 0xff;
if(cmd == 0x81){
door = nibble;
light = (byte2 >> 1) & 1;
lock = byte2 & 1;
motion = 0; // when the status message is read, reset motion state to 0|clear
// obstruction = (byte1 >> 6) & 1; // unreliable due to the time it takes to register an obstruction
}else if(cmd == 0x281){
light ^= 1; // toggle bit
}else if(cmd == 0x84){
}else if(cmd == 0x285){
motion = 1; // toggle bit
void loop()
{
ESP_LOGD(TAG, "loop rollingCodeCounter: %d", this->rollingCodeCounter);
obstructionLoop();
gdoStateLoop();
dryContactLoop();
statusUpdateLoop();
//ESP_LOGD(TAG, "Door State: %s", this->doorState.c_str());
}
}
void RATGDOComponent::getRollingCode(const char* command)
{
void readRollingCode(uint8_t &door, uint8_t &light, uint8_t &lock, uint8_t &motion, uint8_t &obstruction){
uint32_t rolling = 0;
uint64_t fixed = 0;
uint32_t data = 0;
uint64_t id = 0x539;
uint64_t fixed = 0;
uint32_t data = 0;
uint16_t cmd = 0;
uint8_t nibble = 0;
uint8_t byte1 = 0;
uint8_t byte2 = 0;
if(strcmp(command,"reboot1") == 0){
fixed = 0x400000000;
data = 0x0000618b;
}else if(strcmp(command,"reboot2") == 0){
fixed = 0;
data = 0x01009080;
}else if(strcmp(command,"reboot3") == 0){
fixed = 0;
data = 0x0000b1a0;
}else if(strcmp(command,"reboot4") == 0){
fixed = 0;
data = 0x01009080;
}else if(strcmp(command,"reboot5") == 0){
fixed = 0x300000000;
data = 0x00008092;
}else if(strcmp(command,"reboot6") == 0){
fixed = 0x300000000;
data = 0x00008092;
}else if(strcmp(command,"door1") == 0){
fixed = 0x200000000;
data = 0x01018280;
}else if(strcmp(command,"door2") == 0){
fixed = 0x200000000;
data = 0x01009280;
}else if(strcmp(command,"light") == 0){
fixed = 0x200000000;
data = 0x00009281;
}else if(strcmp(command,"lock") == 0){
fixed = 0x0100000000;
data = 0x0000728c;
} else {
ESP_LOGD(TAG, "ERROR: Invalid command");
decode_wireline(this->rxRollingCode, &rolling, &fixed, &data);
cmd = ((fixed >> 24) & 0xf00) | (data & 0xff);
nibble = (data >> 8) & 0xf;
byte1 = (data >> 16) & 0xff;
byte2 = (data >> 24) & 0xff;
if(cmd == 0x81){
door = nibble;
light = (byte2 >> 1) & 1;
lock = byte2 & 1;
motion = 0; // when the status message is read, reset motion state to 0|clear
// obstruction = (byte1 >> 6) & 1; // unreliable due to the time it takes to register an obstruction
}else if(cmd == 0x281){
light ^= 1; // toggle bit
}else if(cmd == 0x84){
}else if(cmd == 0x285){
motion = 1; // toggle bit
}
}
void getRollingCode(const char* command)
{
uint64_t id = 0x539;
uint64_t fixed = 0;
uint32_t data = 0;
if(strcmp(command,"reboot1") == 0){
fixed = 0x400000000;
data = 0x0000618b;
}else if(strcmp(command,"reboot2") == 0){
fixed = 0;
data = 0x01009080;
}else if(strcmp(command,"reboot3") == 0){
fixed = 0;
data = 0x0000b1a0;
}else if(strcmp(command,"reboot4") == 0){
fixed = 0;
data = 0x01009080;
}else if(strcmp(command,"reboot5") == 0){
fixed = 0x300000000;
data = 0x00008092;
}else if(strcmp(command,"reboot6") == 0){
fixed = 0x300000000;
data = 0x00008092;
}else if(strcmp(command,"door1") == 0){
fixed = 0x200000000;
data = 0x01018280;
}else if(strcmp(command,"door2") == 0){
fixed = 0x200000000;
data = 0x01009280;
}else if(strcmp(command,"light") == 0){
fixed = 0x200000000;
data = 0x00009281;
}else if(strcmp(command,"lock") == 0){
fixed = 0x0100000000;
data = 0x0000728c;
} else {
ESP_LOGD(TAG, "ERROR: Invalid command");
return;
}
fixed = fixed | id;
encode_wireline(this->rollingCodeCounter, fixed, data, this->txRollingCode);
printRollingCode();
if (strcmp(command, "door1") != 0) { // door2 is created with same counter and should always be called after door1
this->rollingCodeCounter = (this->rollingCodeCounter + 1) & 0xfffffff;
}
return;
}
fixed = fixed | id;
encode_wireline(this->rollingCodeCounter, fixed, data, this->txRollingCode);
printRollingCode();
if (strcmp(command, "door1") != 0) { // door2 is created with same counter and should always be called after door1
this->rollingCodeCounter = (this->rollingCodeCounter + 1) & 0xfffffff;
}
return;
}
void RATGDOComponent::printRollingCode()
{
for (int i = 0; i < CODE_LENGTH; i++) {
if (this->txRollingCode[i] <= 0x0f)
ESP_LOGD(TAG, "0");
ESP_LOGD(TAG, "%x", this->txRollingCode[i]);
}
}
// handle changes to the dry contact state
void RATGDOComponent::dryContactLoop()
{
if (this->store_.dryContactDoorOpen) {
ESP_LOGD(TAG, "Dry Contact: open the door");
this->store_.dryContactDoorOpen = false;
openDoor();
void printRollingCode()
{
for (int i = 0; i < CODE_LENGTH; i++) {
if (this->txRollingCode[i] <= 0x0f)
ESP_LOGD(TAG, "0");
ESP_LOGD(TAG, "%x", this->txRollingCode[i]);
}
}
if (this->store_.dryContactDoorClose) {
ESP_LOGD(TAG, "Dry Contact: close the door");
this->store_.dryContactDoorClose = false;
closeDoor();
// handle changes to the dry contact state
void dryContactLoop()
{
if (this->store_.dryContactDoorOpen) {
ESP_LOGD(TAG, "Dry Contact: open the door");
this->store_.dryContactDoorOpen = false;
openDoor();
}
if (this->store_.dryContactDoorClose) {
ESP_LOGD(TAG, "Dry Contact: close the door");
this->store_.dryContactDoorClose = false;
closeDoor();
}
if (this->store_.dryContactToggleLight) {
ESP_LOGD(TAG, "Dry Contact: toggle the light");
this->store_.dryContactToggleLight = false;
toggleLight();
}
}
if (this->store_.dryContactToggleLight) {
ESP_LOGD(TAG, "Dry Contact: toggle the light");
this->store_.dryContactToggleLight = false;
toggleLight();
/*************************** OBSTRUCTION DETECTION ***************************/
void obstructionLoop()
{
long currentMillis = millis();
static unsigned long lastMillis = 0;
// the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), obstructed (HIGH), asleep (LOW)
// the transitions between awake and asleep are tricky because the voltage drops slowly when falling asleep
// and is high without pulses when waking up
// If at least 3 low pulses are counted within 50ms, the door is awake, not obstructed and we don't have to check anything else
// Every 50ms
if(currentMillis - lastMillis > 50){
// check to see if we got between 3 and 8 low pulses on the line
if(this->store_.obstructionLowCount >= 3 && this->store_.obstructionLowCount <= 8){
// obstructionCleared();
this->store_.obstructionState = 1;
// if there have been no pulses the line is steady high or low
}else if(this->store_.obstructionLowCount == 0){
// if the line is high and the last high pulse was more than 70ms ago, then there is an obstruction present
if(this->input_obst_pin_->digital_read() && currentMillis - this->store_.lastObstructionHigh > 70){
this->store_.obstructionState = 0;
// obstructionDetected();
}else{
// asleep
}
}
lastMillis = currentMillis;
this->store_.obstructionLowCount = 0;
}
}
}
/*************************** OBSTRUCTION DETECTION ***************************/
void gdoStateLoop(){
if(!this->swSerial.available()) {
//ESP_LOGD(TAG, "No data available input:%d output:%d", this->input_gdo_pin_->get_pin(), this->output_gdo_pin_->get_pin());
return;
}
uint8_t serData = this->swSerial.read();
static uint32_t msgStart;
static bool reading = false;
static uint16_t byteCount = 0;
void RATGDOComponent::obstructionLoop()
{
long currentMillis = millis();
static unsigned long lastMillis = 0;
if(!reading){
// shift serial byte onto msg start
msgStart <<= 8;
msgStart |= serData;
// the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), obstructed (HIGH), asleep (LOW)
// the transitions between awake and asleep are tricky because the voltage drops slowly when falling asleep
// and is high without pulses when waking up
// truncate to 3 bytes
msgStart &= 0x00FFFFFF;
// If at least 3 low pulses are counted within 50ms, the door is awake, not obstructed and we don't have to check anything else
// if we are at the start of a message, capture the next 16 bytes
if(msgStart == 0x550100){
byteCount = 3;
rxRollingCode[0] = 0x55;
rxRollingCode[1] = 0x01;
rxRollingCode[2] = 0x00;
// Every 50ms
if(currentMillis - lastMillis > 50){
// check to see if we got between 3 and 8 low pulses on the line
if(this->store_.obstructionLowCount >= 3 && this->store_.obstructionLowCount <= 8){
// obstructionCleared();
this->store_.obstructionState = 1;
// if there have been no pulses the line is steady high or low
}else if(this->store_.obstructionLowCount == 0){
// if the line is high and the last high pulse was more than 70ms ago, then there is an obstruction present
if(this->input_obst_pin_->digital_read() && currentMillis - this->store_.lastObstructionHigh > 70){
this->store_.obstructionState = 0;
// obstructionDetected();
}else{
// asleep
reading = true;
return;
}
}
lastMillis = currentMillis;
this->store_.obstructionLowCount = 0;
if(reading){
this->rxRollingCode[byteCount] = serData;
byteCount++;
if(byteCount == 19){
reading = false;
msgStart = 0;
byteCount = 0;
readRollingCode(this->store_.doorState, this->store_.lightState, this->store_.lockState, this->store_.motionState, this->store_.obstructionState);
}
}
}
}
void RATGDOComponent::gdoStateLoop(){
if(!this->swSerial.available()) {
//ESP_LOGD(TAG, "No data available input:%d output:%d", this->input_gdo_pin_->get_pin(), this->output_gdo_pin_->get_pin());
return;
void statusUpdateLoop(){
// initialize to unknown
static uint8_t previousDoorState = 0;
static uint8_t previousLightState = 2;
static uint8_t previousLockState = 2;
static uint8_t previousObstructionState = 2;
if(this->store_.doorState != previousDoorState) sendDoorStatus();
if(this->store_.lightState != previousLightState) sendLightStatus();
if(this->store_.lockState != previousLockState) sendLockStatus();
if(this->store_.obstructionState != previousObstructionState) sendObstructionStatus();
if(this->store_.motionState == 1){
sendMotionStatus();
this->store_.motionState = 0;
}
previousDoorState = this->store_.doorState;
previousLightState = this->store_.lightState;
previousLockState = this->store_.lockState;
previousObstructionState = this->store_.obstructionState;
}
uint8_t serData = this->swSerial.read();
static uint32_t msgStart;
static bool reading = false;
static uint16_t byteCount = 0;
void sendDoorStatus(){
ESP_LOGD(TAG, "Door state %d", this->store_.doorState);
this->status_door_pin_->digital_write(this->store_.doorState == 1);
}
if(!reading){
// shift serial byte onto msg start
msgStart <<= 8;
msgStart |= serData;
void sendLightStatus(){
ESP_LOGD(TAG, "Light state %d", this->store_.lightState);
}
// truncate to 3 bytes
msgStart &= 0x00FFFFFF;
void sendLockStatus(){
ESP_LOGD(TAG, "Lock state %d", this->store_.lockState);
}
// if we are at the start of a message, capture the next 16 bytes
if(msgStart == 0x550100){
byteCount = 3;
rxRollingCode[0] = 0x55;
rxRollingCode[1] = 0x01;
rxRollingCode[2] = 0x00;
void sendMotionStatus(){
ESP_LOGD(TAG, "Motion state %d", this->store_.motionState);
this->store_.motionState = 0; // reset motion state
}
reading = true;
void sendObstructionStatus(){
ESP_LOGD(TAG, "Obstruction state %d", this->store_.obstructionState);
this->status_obst_pin_->digital_write(this->store_.obstructionState == 0);
}
/************************* DOOR COMMUNICATION *************************/
/*
* Transmit a message to the door opener over uart1
* The TX1 pin is controlling a transistor, so the logic is inverted
* A HIGH state on TX1 will pull the 12v line LOW
*
* The opener requires a specific duration low/high pulse before it will accept
* a message
*/
void transmit(const unsigned char * payload)
{
this->output_gdo_pin_->digital_write(true); // pull the line high for 1305 micros so the
// door opener responds to the message
delayMicroseconds(1305);
this->output_gdo_pin_->digital_write(false); // bring the line low
delayMicroseconds(1260); // "LOW" pulse duration before the message start
this->swSerial.write(payload, CODE_LENGTH);
}
void sync()
{
getRollingCode("reboot1");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot2");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot3");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot4");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot5");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot6");
transmit(this->txRollingCode);
delay(65);
this->pref_.save(&this->rollingCodeCounter);
}
void openDoor()
{
if(this->doorStates[this->store_.doorState] == "open" || doorStates[this->store_.doorState] == "opening"){
ESP_LOGD(TAG, "The door is already %s", this->doorStates[this->store_.doorState]);
return;
}
toggleDoor();
}
if(reading){
this->rxRollingCode[byteCount] = serData;
byteCount++;
void closeDoor()
{
if(this->doorStates[this->store_.doorState] == "closed" || doorStates[this->store_.doorState] == "closing"){
ESP_LOGD(TAG, "The door is already %s", this->doorStates[this->store_.doorState]);
return;
}
toggleDoor();
}
if(byteCount == 19){
reading = false;
msgStart = 0;
byteCount = 0;
readRollingCode(this->store_.doorState, this->store_.lightState, this->store_.lockState, this->store_.motionState, this->store_.obstructionState);
void stopDoor(){
if(this->doorStates[this->store_.doorState] == "opening" || doorStates[this->store_.doorState] == "closing"){
toggleDoor();
}else{
Serial.print("The door is not moving.");
}
}
}
void RATGDOComponent::statusUpdateLoop(){
// initialize to unknown
static uint8_t previousDoorState = 0;
static uint8_t previousLightState = 2;
static uint8_t previousLockState = 2;
static uint8_t previousObstructionState = 2;
if(this->store_.doorState != previousDoorState) sendDoorStatus();
if(this->store_.lightState != previousLightState) sendLightStatus();
if(this->store_.lockState != previousLockState) sendLockStatus();
if(this->store_.obstructionState != previousObstructionState) sendObstructionStatus();
if(this->store_.motionState == 1){
sendMotionStatus();
this->store_.motionState = 0;
void toggleDoor()
{
getRollingCode("door1");
transmit(this->txRollingCode);
delay(40);
getRollingCode("door2");
transmit(this->txRollingCode);
this->pref_.save(&this->rollingCodeCounter);
}
previousDoorState = this->store_.doorState;
previousLightState = this->store_.lightState;
previousLockState = this->store_.lockState;
previousObstructionState = this->store_.obstructionState;
}
void RATGDOComponent::sendDoorStatus(){
ESP_LOGD(TAG, "Door state %d", this->store_.doorState);
this->status_door_pin_->digital_write(this->store_.doorState == 1);
}
void RATGDOComponent::sendLightStatus(){
ESP_LOGD(TAG, "Light state %d", this->store_.lightState);
}
void RATGDOComponent::sendLockStatus(){
ESP_LOGD(TAG, "Lock state %d", this->store_.lockState);
}
void RATGDOComponent::sendMotionStatus(){
ESP_LOGD(TAG, "Motion state %d", this->store_.motionState);
this->store_.motionState = 0; // reset motion state
}
void RATGDOComponent::sendObstructionStatus(){
ESP_LOGD(TAG, "Obstruction state %d", this->store_.obstructionState);
this->status_obst_pin_->digital_write(this->store_.obstructionState == 0);
}
/************************* DOOR COMMUNICATION *************************/
/*
* Transmit a message to the door opener over uart1
* The TX1 pin is controlling a transistor, so the logic is inverted
* A HIGH state on TX1 will pull the 12v line LOW
*
* The opener requires a specific duration low/high pulse before it will accept
* a message
*/
void RATGDOComponent::transmit(const unsigned char * payload)
{
this->output_gdo_pin_->digital_write(true); // pull the line high for 1305 micros so the
// door opener responds to the message
delayMicroseconds(1305);
this->output_gdo_pin_->digital_write(false); // bring the line low
delayMicroseconds(1260); // "LOW" pulse duration before the message start
this->swSerial.write(payload, CODE_LENGTH);
}
void RATGDOComponent::sync()
{
getRollingCode("reboot1");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot2");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot3");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot4");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot5");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot6");
transmit(this->txRollingCode);
delay(65);
this->pref_.save(&this->rollingCodeCounter);
}
void RATGDOComponent::openDoor()
{
if(this->doorStates[this->store_.doorState] == "open" || doorStates[this->store_.doorState] == "opening"){
ESP_LOGD(TAG, "The door is already %s", this->doorStates[this->store_.doorState]);
return;
void lightOn(){
if(this->lightStates[this->store_.lightState] == "on"){
ESP_LOGD(TAG, "already on");
}else{
toggleLight();
}
}
toggleDoor();
}
void RATGDOComponent::closeDoor()
{
if(this->doorStates[this->store_.doorState] == "closed" || doorStates[this->store_.doorState] == "closing"){
ESP_LOGD(TAG, "The door is already %s", this->doorStates[this->store_.doorState]);
return;
void lightOff(){
if(this->lightStates[this->store_.lightState] == "off"){
ESP_LOGD(TAG, "already off");
}else{
toggleLight();
}
}
toggleDoor();
}
void RATGDOComponent::stopDoor(){
if(this->doorStates[this->store_.doorState] == "opening" || doorStates[this->store_.doorState] == "closing"){
toggleDoor();
}else{
Serial.print("The door is not moving.");
void toggleLight(){
sendCommand("light");
}
// Lock functions
void lock(){
if(this->lockStates[this->store_.lockState] == "locked"){
ESP_LOGD(TAG, "already locked");
}else{
toggleLock();
}
}
void unlock(){
if(this->lockStates[this->store_.lockState] == "unlocked"){
ESP_LOGD(TAG, "already unlocked");
}else{
toggleLock();
}
}
void toggleLock(){
sendCommand("lock");
}
void sendCommand(const char* command){
getRollingCode(command);
transmit(this->txRollingCode);
this->pref_.save(&this->rollingCodeCounter);
}
}
void RATGDOComponent::toggleDoor()
{
getRollingCode("door1");
transmit(this->txRollingCode);
delay(40);
getRollingCode("door2");
transmit(this->txRollingCode);
this->pref_.save(&this->rollingCodeCounter);
}
void RATGDOComponent::lightOn(){
if(this->lightStates[this->store_.lightState] == "on"){
ESP_LOGD(TAG, "already on");
}else{
toggleLight();
}
}
void RATGDOComponent::lightOff(){
if(this->lightStates[this->store_.lightState] == "off"){
ESP_LOGD(TAG, "already off");
}else{
toggleLight();
}
}
void RATGDOComponent::toggleLight(){
sendCommand("light");
}
// Lock functions
void RATGDOComponent::lock(){
if(this->lockStates[this->store_.lockState] == "locked"){
ESP_LOGD(TAG, "already locked");
}else{
toggleLock();
}
}
void RATGDOComponent::unlock(){
if(this->lockStates[this->store_.lockState] == "unlocked"){
ESP_LOGD(TAG, "already unlocked");
}else{
toggleLock();
}
}
void RATGDOComponent::toggleLock(){
sendCommand("lock");
}
void RATGDOComponent::sendCommand(const char* command){
getRollingCode(command);
transmit(this->txRollingCode);
this->pref_.save(&this->rollingCodeCounter);
}
} // namespace ratgdo
} // namespace esphome