/************************************ * Rage * Against * The * Garage * Door * Opener * * Copyright (C) 2022 Paul Wieland * * GNU GENERAL PUBLIC LICENSE ************************************/ #include "ratgdo.h" #include "common.h" #include "dry_contact.h" #include "ratgdo_state.h" #include "secplus1.h" #include "secplus2.h" #include "esphome/core/application.h" #include "esphome/core/gpio.h" #include "esphome/core/log.h" namespace esphome { namespace ratgdo { using namespace protocol; static const char* const TAG = "ratgdo"; static const int SYNC_DELAY = 1000; void RATGDOComponent::setup() { this->output_gdo_pin_->setup(); this->output_gdo_pin_->pin_mode(gpio::FLAG_OUTPUT); this->input_gdo_pin_->setup(); this->input_gdo_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP); if (this->input_obst_pin_ == nullptr) { // Our base.yaml is always going to set this so we check for 0 // as well to avoid a breaking change. this->obstruction_from_status_ = true; } else { this->input_obst_pin_->setup(); this->input_obst_pin_->pin_mode(gpio::FLAG_INPUT); this->input_obst_pin_->attach_interrupt(RATGDOStore::isr_obstruction, &this->isr_store_, gpio::INTERRUPT_FALLING_EDGE); } this->protocol_->setup(this, &App.scheduler, this->input_gdo_pin_, this->output_gdo_pin_); // many things happening at startup, use some delay for sync set_timeout(SYNC_DELAY, [=] { this->sync(); }); ESP_LOGD(TAG, " _____ _____ _____ _____ ____ _____ "); ESP_LOGD(TAG, "| __ | _ |_ _| __| \\| |"); ESP_LOGD(TAG, "| -| | | | | | | | | | |"); ESP_LOGD(TAG, "|__|__|__|__| |_| |_____|____/|_____|"); ESP_LOGD(TAG, "https://paulwieland.github.io/ratgdo/"); } // initializing protocol, this gets called before setup() because // its children components might require that void RATGDOComponent::init_protocol() { #ifdef PROTOCOL_SECPLUSV2 this->protocol_ = new secplus2::Secplus2(); #endif #ifdef PROTOCOL_SECPLUSV1 this->protocol_ = new secplus1::Secplus1(); #endif #ifdef PROTOCOL_DRYCONTACT this->protocol_ = new dry_contact::DryContact(); #endif } void RATGDOComponent::loop() { if (!this->obstruction_from_status_) { this->obstruction_loop(); } this->protocol_->loop(); } void RATGDOComponent::dump_config() { ESP_LOGCONFIG(TAG, "Setting up RATGDO..."); LOG_PIN(" Output GDO Pin: ", this->output_gdo_pin_); LOG_PIN(" Input GDO Pin: ", this->input_gdo_pin_); if (this->obstruction_from_status_) { ESP_LOGCONFIG(TAG, " Input Obstruction Pin: not used, will detect from GDO status"); } else { LOG_PIN(" Input Obstruction Pin: ", this->input_obst_pin_); } this->protocol_->dump_config(); } void RATGDOComponent::received(const DoorState door_state) { ESP_LOGD(TAG, "Door state=%s", DoorState_to_string(door_state)); auto prev_door_state = *this->door_state; if (prev_door_state == door_state) { return; } // opening duration calibration if (*this->opening_duration == 0) { if (door_state == DoorState::OPENING && prev_door_state == DoorState::CLOSED) { this->start_opening = millis(); } if (door_state == DoorState::OPEN && prev_door_state == DoorState::OPENING && this->start_opening > 0) { auto duration = (millis() - this->start_opening) / 1000; this->set_opening_duration(round(duration * 10) / 10); } if (door_state == DoorState::STOPPED) { this->start_opening = -1; } } // closing duration calibration if (*this->closing_duration == 0) { if (door_state == DoorState::CLOSING && prev_door_state == DoorState::OPEN) { this->start_closing = millis(); } if (door_state == DoorState::CLOSED && prev_door_state == DoorState::CLOSING && this->start_closing > 0) { auto duration = (millis() - this->start_closing) / 1000; this->set_closing_duration(round(duration * 10) / 10); } if (door_state == DoorState::STOPPED) { this->start_closing = -1; } } if (door_state == DoorState::OPENING) { // door started opening if (prev_door_state == DoorState::CLOSING) { this->door_position_update(); this->cancel_position_sync_callbacks(); this->door_move_delta = DOOR_DELTA_UNKNOWN; } this->door_start_moving = millis(); this->door_start_position = *this->door_position; if (this->door_move_delta == DOOR_DELTA_UNKNOWN) { this->door_move_delta = 1.0 - this->door_start_position; } if (*this->opening_duration != 0) { this->schedule_door_position_sync(); } } else if (door_state == DoorState::CLOSING) { // door started closing if (prev_door_state == DoorState::OPENING) { this->door_position_update(); this->cancel_position_sync_callbacks(); this->door_move_delta = DOOR_DELTA_UNKNOWN; } this->door_start_moving = millis(); this->door_start_position = *this->door_position; if (this->door_move_delta == DOOR_DELTA_UNKNOWN) { this->door_move_delta = 0.0 - this->door_start_position; } if (*this->closing_duration != 0) { this->schedule_door_position_sync(); } } else if (door_state == DoorState::STOPPED) { this->door_position_update(); if (*this->door_position == DOOR_POSITION_UNKNOWN) { this->door_position = 0.5; // best guess } this->cancel_position_sync_callbacks(); cancel_timeout("door_query_state"); } else if (door_state == DoorState::OPEN) { this->door_position = 1.0; this->cancel_position_sync_callbacks(); } else if (door_state == DoorState::CLOSED) { this->door_position = 0.0; this->cancel_position_sync_callbacks(); } if (door_state == DoorState::OPEN || door_state == DoorState::CLOSED || door_state == DoorState::STOPPED) { this->motor_state = MotorState::OFF; } if (door_state == DoorState::CLOSED && door_state != prev_door_state) { this->query_openings(); } this->door_state = door_state; this->on_door_state_.trigger(door_state); } void RATGDOComponent::received(const LearnState learn_state) { ESP_LOGD(TAG, "Learn state=%s", LearnState_to_string(learn_state)); if (*this->learn_state == learn_state) { return; } if (learn_state == LearnState::INACTIVE) { this->query_paired_devices(); } this->learn_state = learn_state; } void RATGDOComponent::received(const LightState light_state) { ESP_LOGD(TAG, "Light state=%s", LightState_to_string(light_state)); this->light_state = light_state; } void RATGDOComponent::received(const LockState lock_state) { ESP_LOGD(TAG, "Lock state=%s", LockState_to_string(lock_state)); this->lock_state = lock_state; } void RATGDOComponent::received(const ObstructionState obstruction_state) { if (this->obstruction_from_status_) { ESP_LOGD(TAG, "Obstruction: state=%s", ObstructionState_to_string(*this->obstruction_state)); this->obstruction_state = obstruction_state; // This isn't very fast to update, but its still better // than nothing in the case the obstruction sensor is not // wired up. } } void RATGDOComponent::received(const MotorState motor_state) { ESP_LOGD(TAG, "Motor: state=%s", MotorState_to_string(*this->motor_state)); this->motor_state = motor_state; } void RATGDOComponent::received(const ButtonState button_state) { ESP_LOGD(TAG, "Button state=%s", ButtonState_to_string(*this->button_state)); this->button_state = button_state; } void RATGDOComponent::received(const MotionState motion_state) { ESP_LOGD(TAG, "Motion: %s", MotionState_to_string(*this->motion_state)); this->motion_state = motion_state; if (motion_state == MotionState::DETECTED) { this->set_timeout("clear_motion", 3000, [=] { this->motion_state = MotionState::CLEAR; }); if (*this->light_state == LightState::OFF) { this->query_status(); } } } void RATGDOComponent::received(const LightAction light_action) { ESP_LOGD(TAG, "Light cmd=%s state=%s", LightAction_to_string(light_action), LightState_to_string(*this->light_state)); if (light_action == LightAction::OFF) { this->light_state = LightState::OFF; } else if (light_action == LightAction::ON) { this->light_state = LightState::ON; } else if (light_action == LightAction::TOGGLE) { this->light_state = light_state_toggle(*this->light_state); } } void RATGDOComponent::received(const Openings openings) { if (openings.flag == 0 || *this->openings != 0) { this->openings = openings.count; ESP_LOGD(TAG, "Openings: %d", *this->openings); } else { ESP_LOGD(TAG, "Ignoring openings, not from our request"); } } void RATGDOComponent::received(const PairedDeviceCount pdc) { ESP_LOGD(TAG, "Paired device count, kind=%s count=%d", PairedDevice_to_string(pdc.kind), pdc.count); if (pdc.kind == PairedDevice::ALL) { this->paired_total = pdc.count; } else if (pdc.kind == PairedDevice::REMOTE) { this->paired_remotes = pdc.count; } else if (pdc.kind == PairedDevice::KEYPAD) { this->paired_keypads = pdc.count; } else if (pdc.kind == PairedDevice::WALL_CONTROL) { this->paired_wall_controls = pdc.count; } else if (pdc.kind == PairedDevice::ACCESSORY) { this->paired_accessories = pdc.count; } } void RATGDOComponent::received(const TimeToClose ttc) { ESP_LOGD(TAG, "Time to close (TTC): %ds", ttc.seconds); } void RATGDOComponent::received(const BatteryState battery_state) { ESP_LOGD(TAG, "Battery state=%s", BatteryState_to_string(battery_state)); } void RATGDOComponent::schedule_door_position_sync(float update_period) { ESP_LOG1(TAG, "Schedule position sync: delta %f, start position: %f, start moving: %d", this->door_move_delta, this->door_start_position, this->door_start_moving); auto duration = this->door_move_delta > 0 ? *this->opening_duration : *this->closing_duration; if (duration == 0) { return; } auto count = int(1000 * duration / update_period); set_retry("position_sync_while_moving", update_period, count, [=](uint8_t r) { this->door_position_update(); return RetryResult::RETRY; }); } void RATGDOComponent::door_position_update() { if (this->door_start_moving == 0 || this->door_start_position == DOOR_POSITION_UNKNOWN || this->door_move_delta == DOOR_DELTA_UNKNOWN) { return; } auto now = millis(); auto duration = this->door_move_delta > 0 ? *this->opening_duration : -*this->closing_duration; if (duration == 0) { return; } auto position = this->door_start_position + (now - this->door_start_moving) / (1000 * duration); ESP_LOG2(TAG, "[%d] Position update: %f", now, position); this->door_position = clamp(position, 0.0f, 1.0f); } void RATGDOComponent::set_opening_duration(float duration) { ESP_LOGD(TAG, "Set opening duration: %.1fs", duration); this->opening_duration = duration; } void RATGDOComponent::set_closing_duration(float duration) { ESP_LOGD(TAG, "Set closing duration: %.1fs", duration); this->closing_duration = duration; } Result RATGDOComponent::call_protocol(Args args) { return this->protocol_->call(args); } /*************************** OBSTRUCTION DETECTION ***************************/ void RATGDOComponent::obstruction_loop() { long current_millis = millis(); static unsigned long last_millis = 0; static unsigned long last_asleep = 0; // the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), obstructed (HIGH), asleep (LOW) // the transitions between awake and asleep are tricky because the voltage drops slowly when falling asleep // and is high without pulses when waking up // If at least 3 low pulses are counted within 50ms, the door is awake, not obstructed and we don't have to check anything else const long CHECK_PERIOD = 50; const long PULSES_LOWER_LIMIT = 3; if (current_millis - last_millis > CHECK_PERIOD) { // ESP_LOGD(TAG, "%ld: Obstruction count: %d, expected: %d, since asleep: %ld", // current_millis, this->isr_store_.obstruction_low_count, PULSES_EXPECTED, // current_millis - last_asleep // ); // check to see if we got more then PULSES_LOWER_LIMIT pulses if (this->isr_store_.obstruction_low_count > PULSES_LOWER_LIMIT) { this->obstruction_state = ObstructionState::CLEAR; } else if (this->isr_store_.obstruction_low_count == 0) { // if there have been no pulses the line is steady high or low if (!this->input_obst_pin_->digital_read()) { // asleep last_asleep = current_millis; } else { // if the line is high and was last asleep more than 700ms ago, then there is an obstruction present if (current_millis - last_asleep > 700) { this->obstruction_state = ObstructionState::OBSTRUCTED; } } } last_millis = current_millis; this->isr_store_.obstruction_low_count = 0; } } void RATGDOComponent::query_status() { this->protocol_->call(QueryStatus {}); } void RATGDOComponent::query_openings() { this->protocol_->call(QueryOpenings {}); } void RATGDOComponent::query_paired_devices() { this->protocol_->call(QueryPairedDevicesAll {}); } void RATGDOComponent::query_paired_devices(PairedDevice kind) { this->protocol_->call(QueryPairedDevices { kind }); } void RATGDOComponent::clear_paired_devices(PairedDevice kind) { this->protocol_->call(ClearPairedDevices { kind }); } void RATGDOComponent::sync() { this->protocol_->sync(); // dry contact protocol: // needed to trigger the intial state of the limit switch sensors // ideally this would be in drycontact::sync #ifdef PROTOCOL_DRYCONTACT this->protocol_->set_open_limit(this->dry_contact_open_sensor_->state); this->protocol_->set_close_limit(this->dry_contact_close_sensor_->state); #endif } void RATGDOComponent::door_open() { if (*this->door_state == DoorState::OPENING) { return; // gets ignored by opener } this->door_action(DoorAction::OPEN); if (*this->opening_duration > 0) { // query state in case we don't get a status message set_timeout("door_query_state", (*this->opening_duration + 2) * 1000, [=]() { if (*this->door_state != DoorState::OPEN && *this->door_state != DoorState::STOPPED) { this->received(DoorState::OPEN); // probably missed a status mesage, assume it's open this->query_status(); // query in case we're wrong and it's stopped } }); } } void RATGDOComponent::door_close() { if (*this->door_state == DoorState::CLOSING) { return; // gets ignored by opener } if (*this->door_state == DoorState::OPENING) { // have to stop door first, otherwise close command is ignored this->door_action(DoorAction::STOP); this->on_door_state_([=](DoorState s) { if (s == DoorState::STOPPED) { this->door_action(DoorAction::CLOSE); } else { ESP_LOGW(TAG, "Door did not stop, ignoring close command"); } }); return; } this->door_action(DoorAction::CLOSE); if (*this->closing_duration > 0) { // query state in case we don't get a status message set_timeout("door_query_state", (*this->closing_duration + 2) * 1000, [=]() { if (*this->door_state != DoorState::CLOSED && *this->door_state != DoorState::STOPPED) { this->received(DoorState::CLOSED); // probably missed a status mesage, assume it's closed this->query_status(); // query in case we're wrong and it's stopped } }); } } void RATGDOComponent::door_stop() { if (*this->door_state != DoorState::OPENING && *this->door_state != DoorState::CLOSING) { ESP_LOGW(TAG, "The door is not moving."); return; } this->door_action(DoorAction::STOP); } void RATGDOComponent::door_toggle() { this->door_action(DoorAction::TOGGLE); } void RATGDOComponent::door_action(DoorAction action) { this->protocol_->door_action(action); } void RATGDOComponent::door_move_to_position(float position) { if (*this->door_state == DoorState::OPENING || *this->door_state == DoorState::CLOSING) { this->door_action(DoorAction::STOP); this->on_door_state_([=](DoorState s) { if (s == DoorState::STOPPED) { this->door_move_to_position(position); } }); return; } auto delta = position - *this->door_position; if (delta == 0) { ESP_LOGD(TAG, "Door is already at position %.2f", position); return; } auto duration = delta > 0 ? *this->opening_duration : -*this->closing_duration; if (duration == 0) { ESP_LOGW(TAG, "I don't know duration, ignoring move to position"); return; } auto operation_time = 1000 * duration * delta; this->door_move_delta = delta; ESP_LOGD(TAG, "Moving to position %.2f in %.1fs", position, operation_time / 1000.0); this->door_action(delta > 0 ? DoorAction::OPEN : DoorAction::CLOSE); set_timeout("move_to_position", operation_time, [=] { this->door_action(DoorAction::STOP); }); } void RATGDOComponent::cancel_position_sync_callbacks() { if (this->door_start_moving != 0) { ESP_LOGD(TAG, "Cancelling position callbacks"); cancel_timeout("move_to_position"); cancel_retry("position_sync_while_moving"); this->door_start_moving = 0; this->door_start_position = DOOR_POSITION_UNKNOWN; this->door_move_delta = DOOR_DELTA_UNKNOWN; } } void RATGDOComponent::light_on() { this->light_state = LightState::ON; this->protocol_->light_action(LightAction::ON); } void RATGDOComponent::light_off() { this->light_state = LightState::OFF; this->protocol_->light_action(LightAction::OFF); } void RATGDOComponent::light_toggle() { this->light_state = light_state_toggle(*this->light_state); this->protocol_->light_action(LightAction::TOGGLE); } LightState RATGDOComponent::get_light_state() const { return *this->light_state; } // Lock functions void RATGDOComponent::lock() { this->lock_state = LockState::LOCKED; this->protocol_->lock_action(LockAction::LOCK); } void RATGDOComponent::unlock() { this->lock_state = LockState::UNLOCKED; this->protocol_->lock_action(LockAction::UNLOCK); } void RATGDOComponent::lock_toggle() { this->lock_state = lock_state_toggle(*this->lock_state); this->protocol_->lock_action(LockAction::TOGGLE); } // Learn functions void RATGDOComponent::activate_learn() { this->protocol_->call(ActivateLearn {}); } void RATGDOComponent::inactivate_learn() { this->protocol_->call(InactivateLearn {}); } void RATGDOComponent::subscribe_rolling_code_counter(std::function&& f) { // change update to children is defered until after component loop // if multiple changes occur during component loop, only the last one is notified auto counter = this->protocol_->call(GetRollingCodeCounter {}); if (counter.tag == Result::Tag::rolling_code_counter) { counter.value.rolling_code_counter.value->subscribe([=](uint32_t state) { defer("rolling_code_counter", [=] { f(state); }); }); } } void RATGDOComponent::subscribe_opening_duration(std::function&& f) { this->opening_duration.subscribe([=](float state) { defer("opening_duration", [=] { f(state); }); }); } void RATGDOComponent::subscribe_closing_duration(std::function&& f) { this->closing_duration.subscribe([=](float state) { defer("closing_duration", [=] { f(state); }); }); } void RATGDOComponent::subscribe_openings(std::function&& f) { this->openings.subscribe([=](uint16_t state) { defer("openings", [=] { f(state); }); }); } void RATGDOComponent::subscribe_paired_devices_total(std::function&& f) { this->paired_total.subscribe([=](uint16_t state) { defer("paired_total", [=] { f(state); }); }); } void RATGDOComponent::subscribe_paired_remotes(std::function&& f) { this->paired_remotes.subscribe([=](uint16_t state) { defer("paired_remotes", [=] { f(state); }); }); } void RATGDOComponent::subscribe_paired_keypads(std::function&& f) { this->paired_keypads.subscribe([=](uint16_t state) { defer("paired_keypads", [=] { f(state); }); }); } void RATGDOComponent::subscribe_paired_wall_controls(std::function&& f) { this->paired_wall_controls.subscribe([=](uint16_t state) { defer("paired_wall_controls", [=] { f(state); }); }); } void RATGDOComponent::subscribe_paired_accessories(std::function&& f) { this->paired_accessories.subscribe([=](uint16_t state) { defer("paired_accessories", [=] { f(state); }); }); } void RATGDOComponent::subscribe_door_state(std::function&& f) { this->door_state.subscribe([=](DoorState state) { defer("door_state", [=] { f(state, *this->door_position); }); }); this->door_position.subscribe([=](float position) { defer("door_state", [=] { f(*this->door_state, position); }); }); } void RATGDOComponent::subscribe_light_state(std::function&& f) { this->light_state.subscribe([=](LightState state) { defer("light_state", [=] { f(state); }); }); } void RATGDOComponent::subscribe_lock_state(std::function&& f) { this->lock_state.subscribe([=](LockState state) { defer("lock_state", [=] { f(state); }); }); } void RATGDOComponent::subscribe_obstruction_state(std::function&& f) { this->obstruction_state.subscribe([=](ObstructionState state) { defer("obstruction_state", [=] { f(state); }); }); } void RATGDOComponent::subscribe_motor_state(std::function&& f) { this->motor_state.subscribe([=](MotorState state) { defer("motor_state", [=] { f(state); }); }); } void RATGDOComponent::subscribe_button_state(std::function&& f) { this->button_state.subscribe([=](ButtonState state) { defer("button_state", [=] { f(state); }); }); } void RATGDOComponent::subscribe_motion_state(std::function&& f) { this->motion_state.subscribe([=](MotionState state) { defer("motion_state", [=] { f(state); }); }); } void RATGDOComponent::subscribe_sync_failed(std::function&& f) { this->sync_failed.subscribe(std::move(f)); } void RATGDOComponent::subscribe_learn_state(std::function&& f) { this->learn_state.subscribe([=](LearnState state) { defer("learn_state", [=] { f(state); }); }); } // dry contact methods void RATGDOComponent::set_dry_contact_open_sensor(esphome::gpio::GPIOBinarySensor* dry_contact_open_sensor) { dry_contact_open_sensor_ = dry_contact_open_sensor; dry_contact_open_sensor_->add_on_state_callback([this](bool sensor_value) { this->protocol_->set_open_limit(sensor_value); }); } void RATGDOComponent::set_dry_contact_close_sensor(esphome::gpio::GPIOBinarySensor* dry_contact_close_sensor) { dry_contact_close_sensor_ = dry_contact_close_sensor; dry_contact_close_sensor_->add_on_state_callback([this](bool sensor_value) { this->protocol_->set_close_limit(sensor_value); }); } } // namespace ratgdo } // namespace esphome