esphome-ratgdo/components/espsoftwareserial/circular_queue/Delegate.h

2203 lines
66 KiB
C++

/*
Delegate.h - An efficient interchangeable C function ptr and C++ std::function delegate
Copyright (c) 2019 Dirk O. Kaar. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __Delegate_h
#define __Delegate_h
#if defined(ESP8266)
#include <c_types.h>
#elif defined(ESP32)
#include <esp_attr.h>
#else
#define IRAM_ATTR
#endif
#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32)
#include <functional>
#include <cstddef>
#else
#include "circular_queue/ghostl.h"
#endif
namespace
{
template<typename R, typename... P>
__attribute__((always_inline)) inline R IRAM_ATTR vPtrToFunPtrExec(void* fn, P... args)
{
using target_type = R(P...);
return reinterpret_cast<target_type*>(fn)(std::forward<P...>(args...));
}
}
namespace delegate
{
namespace detail
{
#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32)
template<typename A, typename R, typename... P>
class DelegatePImpl {
public:
using target_type = R(P...);
protected:
using FunPtr = target_type*;
using FunAPtr = R(*)(A, P...);
using FunVPPtr = R(*)(void*, P...);
using FunctionType = std::function<target_type>;
public:
DelegatePImpl()
{
kind = FP;
fn = nullptr;
}
DelegatePImpl(std::nullptr_t)
{
kind = FP;
fn = nullptr;
}
~DelegatePImpl()
{
if (FUNC == kind)
functional.~FunctionType();
else if (FPA == kind)
obj.~A();
}
DelegatePImpl(const DelegatePImpl& del)
{
kind = del.kind;
if (FUNC == del.kind)
{
new (&functional) FunctionType(del.functional);
}
else if (FPA == del.kind)
{
fnA = del.fnA;
new (&obj) A(del.obj);
}
else
{
fn = del.fn;
}
}
DelegatePImpl(DelegatePImpl&& del)
{
kind = del.kind;
if (FUNC == del.kind)
{
new (&functional) FunctionType(std::move(del.functional));
}
else if (FPA == del.kind)
{
fnA = del.fnA;
new (&obj) A(std::move(del.obj));
}
else
{
fn = del.fn;
}
}
DelegatePImpl(FunAPtr fnA, const A& obj)
{
kind = FPA;
DelegatePImpl::fnA = fnA;
new (&this->obj) A(obj);
}
DelegatePImpl(FunAPtr fnA, A&& obj)
{
kind = FPA;
DelegatePImpl::fnA = fnA;
new (&this->obj) A(std::move(obj));
}
DelegatePImpl(FunPtr fn)
{
kind = FP;
DelegatePImpl::fn = fn;
}
template<typename F> DelegatePImpl(F functional)
{
kind = FUNC;
new (&this->functional) FunctionType(std::forward<F>(functional));
}
DelegatePImpl& operator=(const DelegatePImpl& del)
{
if (this == &del) return *this;
if (kind != del.kind)
{
if (FUNC == kind)
{
functional.~FunctionType();
}
else if (FPA == kind)
{
obj.~A();
}
if (FUNC == del.kind)
{
new (&this->functional) FunctionType();
}
else if (FPA == del.kind)
{
new (&obj) A;
}
kind = del.kind;
}
if (FUNC == del.kind)
{
functional = del.functional;
}
else if (FPA == del.kind)
{
fnA = del.fnA;
obj = del.obj;
}
else
{
fn = del.fn;
}
return *this;
}
DelegatePImpl& operator=(DelegatePImpl&& del)
{
if (this == &del) return *this;
if (kind != del.kind)
{
if (FUNC == kind)
{
functional.~FunctionType();
}
else if (FPA == kind)
{
obj.~A();
}
if (FUNC == del.kind)
{
new (&this->functional) FunctionType();
}
else if (FPA == del.kind)
{
new (&obj) A;
}
kind = del.kind;
}
if (FUNC == del.kind)
{
functional = std::move(del.functional);
}
else if (FPA == del.kind)
{
fnA = del.fnA;
obj = std::move(del.obj);
}
else
{
fn = del.fn;
}
return *this;
}
DelegatePImpl& operator=(FunPtr fn)
{
if (FUNC == kind)
{
functional.~FunctionType();
}
else if (FPA == kind)
{
obj.~A();
}
kind = FP;
this->fn = fn;
return *this;
}
DelegatePImpl& IRAM_ATTR operator=(std::nullptr_t)
{
if (FUNC == kind)
{
functional.~FunctionType();
}
else if (FPA == kind)
{
obj.~A();
}
kind = FP;
fn = nullptr;
return *this;
}
IRAM_ATTR operator bool() const
{
if (FP == kind)
{
return fn;
}
else if (FPA == kind)
{
return fnA;
}
else
{
return functional ? true : false;
}
}
static inline R IRAM_ATTR vPtrToFunAPtrExec(void* self, P... args) __attribute__((always_inline))
{
return static_cast<DelegatePImpl*>(self)->fnA(
static_cast<DelegatePImpl*>(self)->obj,
std::forward<P...>(args...));
};
operator FunVPPtr() const
{
if (FP == kind)
{
return vPtrToFunPtrExec<R, P...>;
}
else if (FPA == kind)
{
return vPtrToFunAPtrExec;
}
else
{
return [](void* self, P... args) -> R
{
return static_cast<DelegatePImpl*>(self)->functional(std::forward<P...>(args...));
};
}
}
void* arg() const
{
if (FP == kind)
{
return reinterpret_cast<void*>(fn);
}
else
{
return const_cast<DelegatePImpl*>(this);
}
}
operator FunctionType() const
{
if (FP == kind)
{
return fn;
}
else if (FPA == kind)
{
return [this](P... args) { return fnA(obj, std::forward<P...>(args...)); };
}
else
{
return functional;
}
}
/// Calling is safe without checking for nullptr.
/// If non-void, returns the default value.
/// In ISR context, where faults and exceptions must not
/// occurs, this saves the extra check for nullptr,
/// and allows the compiler to optimize out checks
/// in std::function which may not be ISR-safe or
/// cause linker errors, like l32r relocation errors
/// on the Xtensa ISA.
R IRAM_ATTR operator()(P... args) const
{
if (FP == kind)
{
if (fn) return fn(std::forward<P...>(args...));
}
else if (FPA == kind)
{
if (fnA) return fnA(obj, std::forward<P...>(args...));
}
else
{
if (functional) return functional(std::forward<P...>(args...));
}
return R();
}
protected:
union {
FunctionType functional;
FunPtr fn;
struct {
FunAPtr fnA;
A obj;
};
};
enum { FUNC, FP, FPA } kind;
};
#else
template<typename A, typename R, typename... P>
class DelegatePImpl {
public:
using target_type = R(P...);
protected:
using FunPtr = target_type*;
using FunAPtr = R(*)(A, P...);
using FunVPPtr = R(*)(void*, P...);
public:
DelegatePImpl()
{
kind = FP;
fn = nullptr;
}
DelegatePImpl(std::nullptr_t)
{
kind = FP;
fn = nullptr;
}
DelegatePImpl(const DelegatePImpl& del)
{
kind = del.kind;
if (FPA == del.kind)
{
fnA = del.fnA;
obj = del.obj;
}
else
{
fn = del.fn;
}
}
DelegatePImpl(DelegatePImpl&& del)
{
kind = del.kind;
if (FPA == del.kind)
{
fnA = del.fnA;
obj = std::move(del.obj);
}
else
{
fn = del.fn;
}
}
DelegatePImpl(FunAPtr fnA, const A& obj)
{
kind = FPA;
DelegatePImpl::fnA = fnA;
this->obj = obj;
}
DelegatePImpl(FunAPtr fnA, A&& obj)
{
kind = FPA;
DelegatePImpl::fnA = fnA;
this->obj = std::move(obj);
}
DelegatePImpl(FunPtr fn)
{
kind = FP;
DelegatePImpl::fn = fn;
}
template<typename F> DelegatePImpl(F functional)
{
kind = FP;
fn = std::forward<F>(functional);
}
DelegatePImpl& operator=(const DelegatePImpl& del)
{
if (this == &del) return *this;
if (kind != del.kind)
{
if (FPA == kind)
{
obj = {};
}
kind = del.kind;
}
if (FPA == del.kind)
{
fnA = del.fnA;
obj = del.obj;
}
else
{
fn = del.fn;
}
return *this;
}
DelegatePImpl& operator=(DelegatePImpl&& del)
{
if (this == &del) return *this;
if (kind != del.kind)
{
if (FPA == kind)
{
obj = {};
}
kind = del.kind;
}
if (FPA == del.kind)
{
fnA = del.fnA;
obj = std::move(del.obj);
}
else
{
fn = del.fn;
}
return *this;
}
DelegatePImpl& operator=(FunPtr fn)
{
if (FPA == kind)
{
obj = {};
}
kind = FP;
this->fn = fn;
return *this;
}
DelegatePImpl& IRAM_ATTR operator=(std::nullptr_t)
{
if (FPA == kind)
{
obj = {};
}
kind = FP;
fn = nullptr;
return *this;
}
IRAM_ATTR operator bool() const
{
if (FP == kind)
{
return fn;
}
else
{
return fnA;
}
}
static inline R IRAM_ATTR vPtrToFunAPtrExec(void* self, P... args) __attribute__((always_inline))
{
return static_cast<DelegatePImpl*>(self)->fnA(
static_cast<DelegatePImpl*>(self)->obj,
std::forward<P...>(args...));
};
operator FunVPPtr() const
{
if (FP == kind)
{
return vPtrToFunPtrExec<R, P...>;
}
else
{
return vPtrToFunAPtrExec;
}
}
void* arg() const
{
if (FP == kind)
{
return reinterpret_cast<void*>(fn);
}
else
{
return const_cast<DelegatePImpl*>(this);
}
}
/// Calling is safe without checking for nullptr.
/// If non-void, returns the default value.
/// In ISR context, where faults and exceptions must not
/// occurs, this saves the extra check for nullptr,
/// and allows the compiler to optimize out checks
/// in std::function which may not be ISR-safe or
/// cause linker errors, like l32r relocation errors
/// on the Xtensa ISA.
R IRAM_ATTR operator()(P... args) const
{
if (FP == kind)
{
if (fn) return fn(std::forward<P...>(args...));
}
else
{
if (fnA) return fnA(obj, std::forward<P...>(args...));
}
return R();
}
protected:
union {
FunPtr fn;
FunAPtr fnA;
};
A obj;
enum { FP, FPA } kind;
};
#endif
#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32)
template<typename R, typename... P>
class DelegatePImpl<void, R, P...> {
public:
using target_type = R(P...);
protected:
using FunPtr = target_type*;
using FunctionType = std::function<target_type>;
using FunVPPtr = R(*)(void*, P...);
public:
DelegatePImpl()
{
kind = FP;
fn = nullptr;
}
DelegatePImpl(std::nullptr_t)
{
kind = FP;
fn = nullptr;
}
~DelegatePImpl()
{
if (FUNC == kind)
functional.~FunctionType();
}
DelegatePImpl(const DelegatePImpl& del)
{
kind = del.kind;
if (FUNC == del.kind)
{
new (&functional) FunctionType(del.functional);
}
else
{
fn = del.fn;
}
}
DelegatePImpl(DelegatePImpl&& del)
{
kind = del.kind;
if (FUNC == del.kind)
{
new (&functional) FunctionType(std::move(del.functional));
}
else
{
fn = del.fn;
}
}
DelegatePImpl(FunPtr fn)
{
kind = FP;
DelegatePImpl::fn = fn;
}
template<typename F> DelegatePImpl(F functional)
{
kind = FUNC;
new (&this->functional) FunctionType(std::forward<F>(functional));
}
DelegatePImpl& operator=(const DelegatePImpl& del)
{
if (this == &del) return *this;
if (FUNC == kind && FUNC != del.kind)
{
functional.~FunctionType();
}
else if (FUNC != kind && FUNC == del.kind)
{
new (&this->functional) FunctionType();
}
kind = del.kind;
if (FUNC == del.kind)
{
functional = del.functional;
}
else
{
fn = del.fn;
}
return *this;
}
DelegatePImpl& operator=(DelegatePImpl&& del)
{
if (this == &del) return *this;
if (FUNC == kind && FUNC != del.kind)
{
functional.~FunctionType();
}
else if (FUNC != kind && FUNC == del.kind)
{
new (&this->functional) FunctionType();
}
kind = del.kind;
if (FUNC == del.kind)
{
functional = std::move(del.functional);
}
else
{
fn = del.fn;
}
return *this;
}
DelegatePImpl& operator=(FunPtr fn)
{
if (FUNC == kind)
{
functional.~FunctionType();
kind = FP;
}
DelegatePImpl::fn = fn;
return *this;
}
DelegatePImpl& IRAM_ATTR operator=(std::nullptr_t)
{
if (FUNC == kind)
{
functional.~FunctionType();
}
kind = FP;
fn = nullptr;
return *this;
}
IRAM_ATTR operator bool() const
{
if (FP == kind)
{
return fn;
}
else
{
return functional ? true : false;
}
}
operator FunVPPtr() const
{
if (FP == kind)
{
return vPtrToFunPtrExec<R, P...>;
}
else
{
return [](void* self, P... args) -> R
{
return static_cast<DelegatePImpl*>(self)->functional(std::forward<P...>(args...));
};
}
}
void* arg() const
{
if (FP == kind)
{
return reinterpret_cast<void*>(fn);
}
else
{
return const_cast<DelegatePImpl*>(this);
}
}
operator FunctionType() const
{
if (FP == kind)
{
return fn;
}
else
{
return functional;
}
}
/// Calling is safe without checking for nullptr.
/// If non-void, returns the default value.
/// In ISR context, where faults and exceptions must not
/// occurs, this saves the extra check for nullptr,
/// and allows the compiler to optimize out checks
/// in std::function which may not be ISR-safe or
/// cause linker errors, like l32r relocation errors
/// on the Xtensa ISA.
R IRAM_ATTR operator()(P... args) const
{
if (FP == kind)
{
if (fn) return fn(std::forward<P...>(args...));
}
else
{
if (functional) return functional(std::forward<P...>(args...));
}
return R();
}
protected:
union {
FunctionType functional;
FunPtr fn;
};
enum { FUNC, FP } kind;
};
#else
template<typename R, typename... P>
class DelegatePImpl<void, R, P...> {
public:
using target_type = R(P...);
protected:
using FunPtr = target_type*;
using FunVPPtr = R(*)(void*, P...);
public:
DelegatePImpl()
{
fn = nullptr;
}
DelegatePImpl(std::nullptr_t)
{
fn = nullptr;
}
DelegatePImpl(const DelegatePImpl& del)
{
fn = del.fn;
}
DelegatePImpl(DelegatePImpl&& del)
{
fn = std::move(del.fn);
}
DelegatePImpl(FunPtr fn)
{
DelegatePImpl::fn = fn;
}
template<typename F> DelegatePImpl(F fn)
{
DelegatePImpl::fn = std::forward<F>(fn);
}
DelegatePImpl& operator=(const DelegatePImpl& del)
{
if (this == &del) return *this;
fn = del.fn;
return *this;
}
DelegatePImpl& operator=(DelegatePImpl&& del)
{
if (this == &del) return *this;
fn = std::move(del.fn);
return *this;
}
DelegatePImpl& operator=(FunPtr fn)
{
DelegatePImpl::fn = fn;
return *this;
}
inline DelegatePImpl& IRAM_ATTR operator=(std::nullptr_t) __attribute__((always_inline))
{
fn = nullptr;
return *this;
}
inline IRAM_ATTR operator bool() const __attribute__((always_inline))
{
return fn;
}
operator FunVPPtr() const
{
return vPtrToFunPtrExec<R, P...>;
}
void* arg() const
{
return reinterpret_cast<void*>(fn);
}
/// Calling is safe without checking for nullptr.
/// If non-void, returns the default value.
/// In ISR context, where faults and exceptions must not
/// occurs, this saves the extra check for nullptr,
/// and allows the compiler to optimize out checks
/// in std::function which may not be ISR-safe or
/// cause linker errors, like l32r relocation errors
/// on the Xtensa ISA.
inline R IRAM_ATTR operator()(P... args) const __attribute__((always_inline))
{
if (fn) return fn(std::forward<P...>(args...));
return R();
}
protected:
FunPtr fn;
};
#endif
#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32)
template<typename A, typename R>
class DelegateImpl {
public:
using target_type = R();
protected:
using FunPtr = target_type*;
using FunAPtr = R(*)(A);
using FunctionType = std::function<target_type>;
using FunVPPtr = R(*)(void*);
public:
DelegateImpl()
{
kind = FP;
fn = nullptr;
}
DelegateImpl(std::nullptr_t)
{
kind = FP;
fn = nullptr;
}
~DelegateImpl()
{
if (FUNC == kind)
functional.~FunctionType();
else if (FPA == kind)
obj.~A();
}
DelegateImpl(const DelegateImpl& del)
{
kind = del.kind;
if (FUNC == del.kind)
{
new (&functional) FunctionType(del.functional);
}
else if (FPA == del.kind)
{
fnA = del.fnA;
new (&obj) A(del.obj);
}
else
{
fn = del.fn;
}
}
DelegateImpl(DelegateImpl&& del)
{
kind = del.kind;
if (FUNC == del.kind)
{
new (&functional) FunctionType(std::move(del.functional));
}
else if (FPA == del.kind)
{
fnA = del.fnA;
new (&obj) A(std::move(del.obj));
}
else
{
fn = del.fn;
}
}
DelegateImpl(FunAPtr fnA, const A& obj)
{
kind = FPA;
DelegateImpl::fnA = fnA;
new (&this->obj) A(obj);
}
DelegateImpl(FunAPtr fnA, A&& obj)
{
kind = FPA;
DelegateImpl::fnA = fnA;
new (&this->obj) A(std::move(obj));
}
DelegateImpl(FunPtr fn)
{
kind = FP;
DelegateImpl::fn = fn;
}
template<typename F> DelegateImpl(F functional)
{
kind = FUNC;
new (&this->functional) FunctionType(std::forward<F>(functional));
}
DelegateImpl& operator=(const DelegateImpl& del)
{
if (this == &del) return *this;
if (kind != del.kind)
{
if (FUNC == kind)
{
functional.~FunctionType();
}
else if (FPA == kind)
{
obj.~A();
}
if (FUNC == del.kind)
{
new (&this->functional) FunctionType();
}
else if (FPA == del.kind)
{
new (&obj) A;
}
kind = del.kind;
}
if (FUNC == del.kind)
{
functional = del.functional;
}
else if (FPA == del.kind)
{
fnA = del.fnA;
obj = del.obj;
}
else
{
fn = del.fn;
}
return *this;
}
DelegateImpl& operator=(DelegateImpl&& del)
{
if (this == &del) return *this;
if (kind != del.kind)
{
if (FUNC == kind)
{
functional.~FunctionType();
}
else if (FPA == kind)
{
obj.~A();
}
if (FUNC == del.kind)
{
new (&this->functional) FunctionType();
}
else if (FPA == del.kind)
{
new (&obj) A;
}
kind = del.kind;
}
if (FUNC == del.kind)
{
functional = std::move(del.functional);
}
else if (FPA == del.kind)
{
fnA = del.fnA;
obj = std::move(del.obj);
}
else
{
fn = del.fn;
}
return *this;
}
DelegateImpl& operator=(FunPtr fn)
{
if (FUNC == kind)
{
functional.~FunctionType();
}
else if (FPA == kind)
{
obj.~A();
}
kind = FP;
this->fn = fn;
return *this;
}
DelegateImpl& IRAM_ATTR operator=(std::nullptr_t)
{
if (FUNC == kind)
{
functional.~FunctionType();
}
else if (FPA == kind)
{
obj.~A();
}
kind = FP;
fn = nullptr;
return *this;
}
IRAM_ATTR operator bool() const
{
if (FP == kind)
{
return fn;
}
else if (FPA == kind)
{
return fnA;
}
else
{
return functional ? true : false;
}
}
static inline R IRAM_ATTR vPtrToFunAPtrExec(void* self) __attribute__((always_inline))
{
return static_cast<DelegateImpl*>(self)->fnA(
static_cast<DelegateImpl*>(self)->obj);
};
operator FunVPPtr() const
{
if (FP == kind)
{
return reinterpret_cast<FunVPPtr>(fn);
}
else if (FPA == kind)
{
return vPtrToFunAPtrExec;
}
else
{
return [](void* self) -> R
{
return static_cast<DelegateImpl*>(self)->functional();
};
}
}
void* arg() const
{
if (FP == kind)
{
return nullptr;
}
else
{
return const_cast<DelegateImpl*>(this);
}
}
operator FunctionType() const
{
if (FP == kind)
{
return fn;
}
else if (FPA == kind)
{
return [this]() { return fnA(obj); };
}
else
{
return functional;
}
}
/// Calling is safe without checking for nullptr.
/// If non-void, returns the default value.
/// In ISR context, where faults and exceptions must not
/// occurs, this saves the extra check for nullptr,
/// and allows the compiler to optimize out checks
/// in std::function which may not be ISR-safe or
/// cause linker errors, like l32r relocation errors
/// on the Xtensa ISA.
R IRAM_ATTR operator()() const
{
if (FP == kind)
{
if (fn) return fn();
}
else if (FPA == kind)
{
if (fnA) return fnA(obj);
}
else
{
if (functional) return functional();
}
return R();
}
protected:
union {
FunctionType functional;
FunPtr fn;
struct {
FunAPtr fnA;
A obj;
};
};
enum { FUNC, FP, FPA } kind;
};
#else
template<typename A, typename R>
class DelegateImpl {
public:
using target_type = R();
protected:
using FunPtr = target_type*;
using FunAPtr = R(*)(A);
using FunVPPtr = R(*)(void*);
public:
DelegateImpl()
{
kind = FP;
fn = nullptr;
}
DelegateImpl(std::nullptr_t)
{
kind = FP;
fn = nullptr;
}
DelegateImpl(const DelegateImpl& del)
{
kind = del.kind;
if (FPA == del.kind)
{
fnA = del.fnA;
obj = del.obj;
}
else
{
fn = del.fn;
}
}
DelegateImpl(DelegateImpl&& del)
{
kind = del.kind;
if (FPA == del.kind)
{
fnA = del.fnA;
obj = std::move(del.obj);
}
else
{
fn = del.fn;
}
}
DelegateImpl(FunAPtr fnA, const A& obj)
{
kind = FPA;
DelegateImpl::fnA = fnA;
this->obj = obj;
}
DelegateImpl(FunAPtr fnA, A&& obj)
{
kind = FPA;
DelegateImpl::fnA = fnA;
this->obj = std::move(obj);
}
DelegateImpl(FunPtr fn)
{
kind = FP;
DelegateImpl::fn = fn;
}
template<typename F> DelegateImpl(F fn)
{
kind = FP;
DelegateImpl::fn = std::forward<F>(fn);
}
DelegateImpl& operator=(const DelegateImpl& del)
{
if (this == &del) return *this;
if (kind != del.kind)
{
if (FPA == kind)
{
obj = {};
}
kind = del.kind;
}
if (FPA == del.kind)
{
fnA = del.fnA;
obj = del.obj;
}
else
{
fn = del.fn;
}
return *this;
}
DelegateImpl& operator=(DelegateImpl&& del)
{
if (this == &del) return *this;
if (kind != del.kind)
{
if (FPA == kind)
{
obj = {};
}
kind = del.kind;
}
if (FPA == del.kind)
{
fnA = del.fnA;
obj = std::move(del.obj);
}
else
{
fn = del.fn;
}
return *this;
}
DelegateImpl& operator=(FunPtr fn)
{
if (FPA == kind)
{
obj = {};
}
kind = FP;
this->fn = fn;
return *this;
}
DelegateImpl& IRAM_ATTR operator=(std::nullptr_t)
{
if (FPA == kind)
{
obj = {};
}
kind = FP;
fn = nullptr;
return *this;
}
IRAM_ATTR operator bool() const
{
if (FP == kind)
{
return fn;
}
else
{
return fnA;
}
}
static inline R IRAM_ATTR vPtrToFunAPtrExec(void* self) __attribute__((always_inline))
{
return static_cast<DelegateImpl*>(self)->fnA(
static_cast<DelegateImpl*>(self)->obj);
};
operator FunVPPtr() const
{
if (FP == kind)
{
return reinterpret_cast<FunVPPtr>(fn);
}
else
{
return vPtrToFunAPtrExec;
}
}
void* arg() const
{
if (FP == kind)
{
return nullptr;
}
else
{
return const_cast<DelegateImpl*>(this);
}
}
/// Calling is safe without checking for nullptr.
/// If non-void, returns the default value.
/// In ISR context, where faults and exceptions must not
/// occurs, this saves the extra check for nullptr,
/// and allows the compiler to optimize out checks
/// in std::function which may not be ISR-safe or
/// cause linker errors, like l32r relocation errors
/// on the Xtensa ISA.
R IRAM_ATTR operator()() const
{
if (FP == kind)
{
if (fn) return fn();
}
else
{
if (fnA) return fnA(obj);
}
return R();
}
protected:
union {
FunPtr fn;
FunAPtr fnA;
};
A obj;
enum { FP, FPA } kind;
};
#endif
#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32)
template<typename R>
class DelegateImpl<void, R> {
public:
using target_type = R();
protected:
using FunPtr = target_type*;
using FunctionType = std::function<target_type>;
using FunVPPtr = R(*)(void*);
public:
DelegateImpl()
{
kind = FP;
fn = nullptr;
}
DelegateImpl(std::nullptr_t)
{
kind = FP;
fn = nullptr;
}
~DelegateImpl()
{
if (FUNC == kind)
functional.~FunctionType();
}
DelegateImpl(const DelegateImpl& del)
{
kind = del.kind;
if (FUNC == del.kind)
{
new (&functional) FunctionType(del.functional);
}
else
{
fn = del.fn;
}
}
DelegateImpl(DelegateImpl&& del)
{
kind = del.kind;
if (FUNC == del.kind)
{
new (&functional) FunctionType(std::move(del.functional));
}
else
{
fn = del.fn;
}
}
DelegateImpl(FunPtr fn)
{
kind = FP;
DelegateImpl::fn = fn;
}
template<typename F> DelegateImpl(F functional)
{
kind = FUNC;
new (&this->functional) FunctionType(std::forward<F>(functional));
}
DelegateImpl& operator=(const DelegateImpl& del)
{
if (this == &del) return *this;
if (FUNC == kind && FUNC != del.kind)
{
functional.~FunctionType();
}
else if (FUNC != kind && FUNC == del.kind)
{
new (&this->functional) FunctionType();
}
kind = del.kind;
if (FUNC == del.kind)
{
functional = del.functional;
}
else
{
fn = del.fn;
}
return *this;
}
DelegateImpl& operator=(DelegateImpl&& del)
{
if (this == &del) return *this;
if (FUNC == kind && FUNC != del.kind)
{
functional.~FunctionType();
}
else if (FUNC != kind && FUNC == del.kind)
{
new (&this->functional) FunctionType();
}
kind = del.kind;
if (FUNC == del.kind)
{
functional = std::move(del.functional);
}
else
{
fn = del.fn;
}
return *this;
}
DelegateImpl& operator=(FunPtr fn)
{
if (FUNC == kind)
{
functional.~FunctionType();
kind = FP;
}
DelegateImpl::fn = fn;
return *this;
}
DelegateImpl& IRAM_ATTR operator=(std::nullptr_t)
{
if (FUNC == kind)
{
functional.~FunctionType();
}
kind = FP;
fn = nullptr;
return *this;
}
IRAM_ATTR operator bool() const
{
if (FP == kind)
{
return fn;
}
else
{
return functional ? true : false;
}
}
operator FunVPPtr() const
{
if (FP == kind)
{
return reinterpret_cast<FunVPPtr>(fn);
}
else
{
return [](void* self) -> R
{
return static_cast<DelegateImpl*>(self)->functional();
};
}
}
void* arg() const
{
if (FP == kind)
{
return nullptr;
}
else
{
return const_cast<DelegateImpl*>(this);
}
}
operator FunctionType() const
{
if (FP == kind)
{
return fn;
}
else
{
return functional;
}
}
/// Calling is safe without checking for nullptr.
/// If non-void, returns the default value.
/// In ISR context, where faults and exceptions must not
/// occurs, this saves the extra check for nullptr,
/// and allows the compiler to optimize out checks
/// in std::function which may not be ISR-safe or
/// cause linker errors, like l32r relocation errors
/// on the Xtensa ISA.
R IRAM_ATTR operator()() const
{
if (FP == kind)
{
if (fn) return fn();
}
else
{
if (functional) return functional();
}
return R();
}
protected:
union {
FunctionType functional;
FunPtr fn;
};
enum { FUNC, FP } kind;
};
#else
template<typename R>
class DelegateImpl<void, R> {
public:
using target_type = R();
protected:
using FunPtr = target_type*;
using FunVPPtr = R(*)(void*);
public:
DelegateImpl()
{
fn = nullptr;
}
DelegateImpl(std::nullptr_t)
{
fn = nullptr;
}
DelegateImpl(const DelegateImpl& del)
{
fn = del.fn;
}
DelegateImpl(DelegateImpl&& del)
{
fn = std::move(del.fn);
}
DelegateImpl(FunPtr fn)
{
DelegateImpl::fn = fn;
}
template<typename F> DelegateImpl(F fn)
{
DelegateImpl::fn = std::forward<F>(fn);
}
DelegateImpl& operator=(const DelegateImpl& del)
{
if (this == &del) return *this;
fn = del.fn;
return *this;
}
DelegateImpl& operator=(DelegateImpl&& del)
{
if (this == &del) return *this;
fn = std::move(del.fn);
return *this;
}
DelegateImpl& operator=(FunPtr fn)
{
DelegateImpl::fn = fn;
return *this;
}
inline DelegateImpl& IRAM_ATTR operator=(std::nullptr_t) __attribute__((always_inline))
{
fn = nullptr;
return *this;
}
inline IRAM_ATTR operator bool() const __attribute__((always_inline))
{
return fn;
}
operator FunVPPtr() const
{
return reinterpret_cast<FunVPPtr>(fn);
}
void* arg() const
{
return nullptr;
}
/// Calling is safe without checking for nullptr.
/// If non-void, returns the default value.
/// In ISR context, where faults and exceptions must not
/// occurs, this saves the extra check for nullptr,
/// and allows the compiler to optimize out checks
/// in std::function which may not be ISR-safe or
/// cause linker errors, like l32r relocation errors
/// on the Xtensa ISA.
inline R IRAM_ATTR operator()() const __attribute__((always_inline))
{
if (fn) return fn();
return R();
}
protected:
FunPtr fn;
};
#endif
template<typename A = void, typename R = void, typename... P>
class Delegate : private detail::DelegatePImpl<A, R, P...>
{
public:
using target_type = R(P...);
protected:
using FunPtr = target_type*;
using FunAPtr = R(*)(A, P...);
using FunVPPtr = R(*)(void*, P...);
#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32)
using FunctionType = std::function<target_type>;
#endif
public:
using detail::DelegatePImpl<A, R, P...>::operator bool;
using detail::DelegatePImpl<A, R, P...>::arg;
using detail::DelegatePImpl<A, R, P...>::operator();
operator FunVPPtr() { return detail::DelegatePImpl<A, R, P...>::operator FunVPPtr(); }
#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32)
operator FunctionType() { return detail::DelegatePImpl<A, R, P...>::operator FunctionType(); }
#endif
Delegate() : detail::DelegatePImpl<A, R, P...>::DelegatePImpl() {}
Delegate(std::nullptr_t) : detail::DelegatePImpl<A, R, P...>::DelegatePImpl(nullptr) {}
Delegate(const Delegate& del) : detail::DelegatePImpl<A, R, P...>::DelegatePImpl(
static_cast<const detail::DelegatePImpl<A, R, P...>&>(del)) {}
Delegate(Delegate&& del) : detail::DelegatePImpl<A, R, P...>::DelegatePImpl(
std::move(static_cast<detail::DelegatePImpl<A, R, P...>&>(del))) {}
Delegate(FunAPtr fnA, const A& obj) : detail::DelegatePImpl<A, R, P...>::DelegatePImpl(fnA, obj) {}
Delegate(FunAPtr fnA, A&& obj) : detail::DelegatePImpl<A, R, P...>::DelegatePImpl(fnA, std::move(obj)) {}
Delegate(FunPtr fn) : detail::DelegatePImpl<A, R, P...>::DelegatePImpl(fn) {}
template<typename F> Delegate(F functional) : detail::DelegatePImpl<A, R, P...>::DelegatePImpl(std::forward<F>(functional)) {}
Delegate& operator=(const Delegate& del) {
detail::DelegatePImpl<A, R, P...>::operator=(del);
return *this;
}
Delegate& operator=(Delegate&& del) {
detail::DelegatePImpl<A, R, P...>::operator=(std::move(del));
return *this;
}
Delegate& operator=(FunPtr fn) {
detail::DelegatePImpl<A, R, P...>::operator=(fn);
return *this;
}
inline Delegate& IRAM_ATTR operator=(std::nullptr_t) __attribute__((always_inline)) {
detail::DelegatePImpl<A, R, P...>::operator=(nullptr);
return *this;
}
};
template<typename A, typename R, typename... P>
class Delegate<A*, R, P...> : private detail::DelegatePImpl<A*, R, P...>
{
public:
using target_type = R(P...);
protected:
using FunPtr = target_type*;
using FunAPtr = R(*)(A*, P...);
using FunVPPtr = R(*)(void*, P...);
#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32)
using FunctionType = std::function<target_type>;
#endif
public:
using detail::DelegatePImpl<A*, R, P...>::operator bool;
using detail::DelegatePImpl<A*, R, P...>::operator();
operator FunVPPtr() const
{
if (detail::DelegatePImpl<A*, R, P...>::FPA == detail::DelegatePImpl<A*, R, P...>::kind)
{
return reinterpret_cast<FunVPPtr>(detail::DelegatePImpl<A*, R, P...>::fnA);
}
else
{
return detail::DelegatePImpl<A*, R, P...>::operator FunVPPtr();
}
}
#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32)
operator FunctionType() { return detail::DelegatePImpl<A*, R, P...>::operator FunctionType(); }
#endif
void* arg() const
{
if (detail::DelegatePImpl<A*, R, P...>::FPA == detail::DelegatePImpl<A*, R, P...>::kind)
{
return detail::DelegatePImpl<A*, R, P...>::obj;
}
else
{
return detail::DelegatePImpl<A*, R, P...>::arg();
}
}
Delegate() : detail::DelegatePImpl<A*, R, P...>::DelegatePImpl() {}
Delegate(std::nullptr_t) : detail::DelegatePImpl<A*, R, P...>::DelegatePImpl(nullptr) {}
Delegate(const Delegate& del) : detail::DelegatePImpl<A*, R, P...>::DelegatePImpl(
static_cast<const detail::DelegatePImpl<A*, R, P...>&>(del)) {}
Delegate(Delegate&& del) : detail::DelegatePImpl<A*, R, P...>::DelegatePImpl(
std::move(static_cast<detail::DelegatePImpl<A*, R, P...>&>(del))) {}
Delegate(FunAPtr fnA, A* obj) : detail::DelegatePImpl<A*, R, P...>::DelegatePImpl(fnA, obj) {}
Delegate(FunPtr fn) : detail::DelegatePImpl<A*, R, P...>::DelegatePImpl(fn) {}
template<typename F> Delegate(F functional) : detail::DelegatePImpl<A*, R, P...>::DelegatePImpl(std::forward<F>(functional)) {}
Delegate& operator=(const Delegate& del) {
detail::DelegatePImpl<A*, R, P...>::operator=(del);
return *this;
}
Delegate& operator=(Delegate&& del) {
detail::DelegatePImpl<A*, R, P...>::operator=(std::move(del));
return *this;
}
Delegate& operator=(FunPtr fn) {
detail::DelegatePImpl<A*, R, P...>::operator=(fn);
return *this;
}
inline Delegate& IRAM_ATTR operator=(std::nullptr_t) __attribute__((always_inline)) {
detail::DelegatePImpl<A*, R, P...>::operator=(nullptr);
return *this;
}
};
template<typename R, typename... P>
class Delegate<void, R, P...> : private detail::DelegatePImpl<void, R, P...>
{
public:
using target_type = R(P...);
protected:
using FunPtr = target_type*;
#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32)
using FunctionType = std::function<target_type>;
#endif
using FunVPPtr = R(*)(void*, P...);
public:
using detail::DelegatePImpl<void, R, P...>::operator bool;
using detail::DelegatePImpl<void, R, P...>::arg;
using detail::DelegatePImpl<void, R, P...>::operator();
operator FunVPPtr() const { return detail::DelegatePImpl<void, R, P...>::operator FunVPPtr(); }
#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32)
operator FunctionType() { return detail::DelegatePImpl<void, R, P...>::operator FunctionType(); }
#endif
Delegate() : detail::DelegatePImpl<void, R, P...>::DelegatePImpl() {}
Delegate(std::nullptr_t) : detail::DelegatePImpl<void, R, P...>::DelegatePImpl(nullptr) {}
Delegate(const Delegate& del) : detail::DelegatePImpl<void, R, P...>::DelegatePImpl(
static_cast<const detail::DelegatePImpl<void, R, P...>&>(del)) {}
Delegate(Delegate&& del) : detail::DelegatePImpl<void, R, P...>::DelegatePImpl(
std::move(static_cast<detail::DelegatePImpl<void, R, P...>&>(del))) {}
Delegate(FunPtr fn) : detail::DelegatePImpl<void, R, P...>::DelegatePImpl(fn) {}
template<typename F> Delegate(F functional) : detail::DelegatePImpl<void, R, P...>::DelegatePImpl(std::forward<F>(functional)) {}
Delegate& operator=(const Delegate& del) {
detail::DelegatePImpl<void, R, P...>::operator=(del);
return *this;
}
Delegate& operator=(Delegate&& del) {
detail::DelegatePImpl<void, R, P...>::operator=(std::move(del));
return *this;
}
Delegate& operator=(FunPtr fn) {
detail::DelegatePImpl<void, R, P...>::operator=(fn);
return *this;
}
inline Delegate& IRAM_ATTR operator=(std::nullptr_t) __attribute__((always_inline)) {
detail::DelegatePImpl<void, R, P...>::operator=(nullptr);
return *this;
}
};
template<typename A, typename R>
class Delegate<A, R> : private detail::DelegateImpl<A, R>
{
public:
using target_type = R();
protected:
using FunPtr = target_type*;
using FunAPtr = R(*)(A);
using FunVPPtr = R(*)(void*);
#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32)
using FunctionType = std::function<target_type>;
#endif
public:
using detail::DelegateImpl<A, R>::operator bool;
using detail::DelegateImpl<A, R>::arg;
using detail::DelegateImpl<A, R>::operator();
operator FunVPPtr() { return detail::DelegateImpl<A, R>::operator FunVPPtr(); }
#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32)
operator FunctionType() { return detail::DelegateImpl<A, R>::operator FunctionType(); }
#endif
Delegate() : detail::DelegateImpl<A, R>::DelegateImpl() {}
Delegate(std::nullptr_t) : detail::DelegateImpl<A, R>::DelegateImpl(nullptr) {}
Delegate(const Delegate& del) : detail::DelegateImpl<A, R>::DelegateImpl(
static_cast<const detail::DelegateImpl<A, R>&>(del)) {}
Delegate(Delegate&& del) : detail::DelegateImpl<A, R>::DelegateImpl(
std::move(static_cast<detail::DelegateImpl<A, R>&>(del))) {}
Delegate(FunAPtr fnA, const A& obj) : detail::DelegateImpl<A, R>::DelegateImpl(fnA, obj) {}
Delegate(FunAPtr fnA, A&& obj) : detail::DelegateImpl<A, R>::DelegateImpl(fnA, std::move(obj)) {}
Delegate(FunPtr fn) : detail::DelegateImpl<A, R>::DelegateImpl(fn) {}
template<typename F> Delegate(F functional) : detail::DelegateImpl<A, R>::DelegateImpl(std::forward<F>(functional)) {}
Delegate& operator=(const Delegate& del) {
detail::DelegateImpl<A, R>::operator=(del);
return *this;
}
Delegate& operator=(Delegate&& del) {
detail::DelegateImpl<A, R>::operator=(std::move(del));
return *this;
}
Delegate& operator=(FunPtr fn) {
detail::DelegateImpl<A, R>::operator=(fn);
return *this;
}
inline Delegate& IRAM_ATTR operator=(std::nullptr_t) __attribute__((always_inline)) {
detail::DelegateImpl<A, R>::operator=(nullptr);
return *this;
}
};
template<typename A, typename R>
class Delegate<A*, R> : private detail::DelegateImpl<A*, R>
{
public:
using target_type = R();
protected:
using FunPtr = target_type*;
using FunAPtr = R(*)(A*);
using FunVPPtr = R(*)(void*);
#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32)
using FunctionType = std::function<target_type>;
#endif
public:
using detail::DelegateImpl<A*, R>::operator bool;
using detail::DelegateImpl<A*, R>::operator();
operator FunVPPtr() const
{
if (detail::DelegateImpl<A*, R>::FPA == detail::DelegateImpl<A*, R>::kind)
{
return reinterpret_cast<FunVPPtr>(detail::DelegateImpl<A*, R>::fnA);
}
else
{
return detail::DelegateImpl<A*, R>::operator FunVPPtr();
}
}
#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32)
operator FunctionType() { return detail::DelegateImpl<A*, R>::operator FunctionType(); }
#endif
void* arg() const
{
if (detail::DelegateImpl<A*, R>::FPA == detail::DelegateImpl<A*, R>::kind)
{
return detail::DelegateImpl<A*, R>::obj;
}
else
{
return detail::DelegateImpl<A*, R>::arg();
}
}
Delegate() : detail::DelegateImpl<A*, R>::DelegateImpl() {}
Delegate(std::nullptr_t) : detail::DelegateImpl<A*, R>::DelegateImpl(nullptr) {}
Delegate(const Delegate& del) : detail::DelegateImpl<A*, R>::DelegateImpl(
static_cast<const detail::DelegateImpl<A*, R>&>(del)) {}
Delegate(Delegate&& del) : detail::DelegateImpl<A*, R>::DelegateImpl(
std::move(static_cast<detail::DelegateImpl<A*, R>&>(del))) {}
Delegate(FunAPtr fnA, A* obj) : detail::DelegateImpl<A*, R>::DelegateImpl(fnA, obj) {}
Delegate(FunPtr fn) : detail::DelegateImpl<A*, R>::DelegateImpl(fn) {}
template<typename F> Delegate(F functional) : detail::DelegateImpl<A*, R>::DelegateImpl(std::forward<F>(functional)) {}
Delegate& operator=(const Delegate& del) {
detail::DelegateImpl<A*, R>::operator=(del);
return *this;
}
Delegate& operator=(Delegate&& del) {
detail::DelegateImpl<A*, R>::operator=(std::move(del));
return *this;
}
Delegate& operator=(FunPtr fn) {
detail::DelegateImpl<A*, R>::operator=(fn);
return *this;
}
inline Delegate& IRAM_ATTR operator=(std::nullptr_t) __attribute__((always_inline)) {
detail::DelegateImpl<A*, R>::operator=(nullptr);
return *this;
}
};
template<typename R>
class Delegate<void, R> : private detail::DelegateImpl<void, R>
{
public:
using target_type = R();
protected:
using FunPtr = target_type*;
#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32)
using FunctionType = std::function<target_type>;
#endif
using FunVPPtr = R(*)(void*);
public:
using detail::DelegateImpl<void, R>::operator bool;
using detail::DelegateImpl<void, R>::arg;
using detail::DelegateImpl<void, R>::operator();
operator FunVPPtr() const { return detail::DelegateImpl<void, R>::operator FunVPPtr(); }
#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32)
operator FunctionType() { return detail::DelegateImpl<void, R>::operator FunctionType(); }
#endif
Delegate() : detail::DelegateImpl<void, R>::DelegateImpl() {}
Delegate(std::nullptr_t) : detail::DelegateImpl<void, R>::DelegateImpl(nullptr) {}
Delegate(const Delegate& del) : detail::DelegateImpl<void, R>::DelegateImpl(
static_cast<const detail::DelegateImpl<void, R>&>(del)) {}
Delegate(Delegate&& del) : detail::DelegateImpl<void, R>::DelegateImpl(
std::move(static_cast<detail::DelegateImpl<void, R>&>(del))) {}
Delegate(FunPtr fn) : detail::DelegateImpl<void, R>::DelegateImpl(fn) {}
template<typename F> Delegate(F functional) : detail::DelegateImpl<void, R>::DelegateImpl(std::forward<F>(functional)) {}
Delegate& operator=(const Delegate& del) {
detail::DelegateImpl<void, R>::operator=(del);
return *this;
}
Delegate& operator=(Delegate&& del) {
detail::DelegateImpl<void, R>::operator=(std::move(del));
return *this;
}
Delegate& operator=(FunPtr fn) {
detail::DelegateImpl<void, R>::operator=(fn);
return *this;
}
inline Delegate& IRAM_ATTR operator=(std::nullptr_t) __attribute__((always_inline)) {
detail::DelegateImpl<void, R>::operator=(nullptr);
return *this;
}
};
}
}
template<typename A = void, typename R = void, typename... P> class Delegate;
template<typename A, typename R, typename... P> class Delegate<R(P...), A> : public delegate::detail::Delegate<A, R, P...>
{
public:
Delegate() : delegate::detail::Delegate<A, R, P...>::Delegate() {}
Delegate(std::nullptr_t) : delegate::detail::Delegate<A, R, P...>::Delegate(nullptr) {}
Delegate(const Delegate& del) : delegate::detail::Delegate<A, R, P...>::Delegate(
static_cast<const delegate::detail::Delegate<A, R, P...>&>(del)) {}
Delegate(Delegate&& del) : delegate::detail::Delegate<A, R, P...>::Delegate(
std::move(static_cast<delegate::detail::Delegate<A, R, P...>&>(del))) {}
Delegate(typename delegate::detail::Delegate<A, R, P...>::FunAPtr fnA, const A& obj) : delegate::detail::Delegate<A, R, P...>::Delegate(fnA, obj) {}
Delegate(typename delegate::detail::Delegate<A, R, P...>::FunAPtr fnA, A&& obj) : delegate::detail::Delegate<A, R, P...>::Delegate(fnA, std::move(obj)) {}
Delegate(typename delegate::detail::Delegate<A, R, P...>::FunPtr fn) : delegate::detail::Delegate<A, R, P...>::Delegate(fn) {}
template<typename F> Delegate(F functional) : delegate::detail::Delegate<A, R, P...>::Delegate(std::forward<F>(functional)) {}
Delegate& operator=(const Delegate& del) {
delegate::detail::Delegate<A, R, P...>::operator=(del);
return *this;
}
Delegate& operator=(Delegate&& del) {
delegate::detail::Delegate<A, R, P...>::operator=(std::move(del));
return *this;
}
Delegate& operator=(typename delegate::detail::Delegate<A, R, P...>::FunPtr fn) {
delegate::detail::Delegate<A, R, P...>::operator=(fn);
return *this;
}
inline Delegate& IRAM_ATTR operator=(std::nullptr_t) __attribute__((always_inline)) {
delegate::detail::Delegate<A, R, P...>::operator=(nullptr);
return *this;
}
};
template<typename R, typename... P> class Delegate<R(P...)> : public delegate::detail::Delegate<void, R, P...>
{
public:
Delegate() : delegate::detail::Delegate<void, R, P...>::Delegate() {}
Delegate(std::nullptr_t) : delegate::detail::Delegate<void, R, P...>::Delegate(nullptr) {}
Delegate(const Delegate& del) : delegate::detail::Delegate<void, R, P...>::Delegate(
static_cast<const delegate::detail::Delegate<void, R, P...>&>(del)) {}
Delegate(Delegate&& del) : delegate::detail::Delegate<void, R, P...>::Delegate(
std::move(static_cast<delegate::detail::Delegate<void, R, P...>&>(del))) {}
Delegate(typename delegate::detail::Delegate<void, R, P...>::FunPtr fn) : delegate::detail::Delegate<void, R, P...>::Delegate(fn) {}
template<typename F> Delegate(F functional) : delegate::detail::Delegate<void, R, P...>::Delegate(std::forward<F>(functional)) {}
Delegate& operator=(const Delegate& del) {
delegate::detail::Delegate<void, R, P...>::operator=(del);
return *this;
}
Delegate& operator=(Delegate&& del) {
delegate::detail::Delegate<void, R, P...>::operator=(std::move(del));
return *this;
}
Delegate& operator=(typename delegate::detail::Delegate<void, R, P...>::FunPtr fn) {
delegate::detail::Delegate<void, R, P...>::operator=(fn);
return *this;
}
inline Delegate& IRAM_ATTR operator=(std::nullptr_t) __attribute__((always_inline)) {
delegate::detail::Delegate<void, R, P...>::operator=(nullptr);
return *this;
}
};
#endif // __Delegate_h