esphome-ratgdo/components/ratgdo/ratgdo.cpp

559 lines
20 KiB
C++

/************************************
* Rage
* Against
* The
* Garage
* Door
* Opener
*
* Copyright (C) 2022 Paul Wieland
*
* GNU GENERAL PUBLIC LICENSE
************************************/
#include "ratgdo.h"
#include "esphome/core/log.h"
namespace esphome {
namespace ratgdo {
static const char* const TAG = "ratgdo";
/*** Static Codes ***/
static const unsigned char SYNC1[] = { 0x55, 0x01, 0x00, 0x61, 0x12, 0x49, 0x2c, 0x92, 0x5b, 0x24,
0x96, 0x86, 0x0b, 0x65, 0x96, 0xd9, 0x8f, 0x26, 0x4a };
static const unsigned char SYNC2[] = { 0x55, 0x01, 0x00, 0x08, 0x34, 0x93, 0x49, 0xb4, 0x92, 0x4d,
0x20, 0x26, 0x1b, 0x4d, 0xb4, 0xdb, 0xad, 0x76, 0x93 };
static const unsigned char SYNC3[] = { 0x55, 0x01, 0x00, 0x06, 0x1b, 0x2c, 0xbf, 0x4b, 0x6d, 0xb6,
0x4b, 0x18, 0x20, 0x92, 0x09, 0x20, 0xf2, 0x11, 0x2c };
static const unsigned char SYNC4[] = { 0x55, 0x01, 0x00, 0x95, 0x29, 0x36, 0x91, 0x29, 0x36, 0x9a,
0x69, 0x05, 0x2f, 0xbe, 0xdf, 0x6d, 0x16, 0xcb, 0xe7 };
static const unsigned char DOOR_CODE[] = { 0x55, 0x01, 0x00, 0x94, 0x3f, 0xef, 0xbc, 0xfb, 0x7f, 0xbe,
0xfc, 0xa6, 0x1a, 0x4d, 0xa6, 0xda, 0x8d, 0x36, 0xb3 };
static const unsigned char LIGHT_CODE[] = { 0x55, 0x01, 0x00, 0x94, 0x3f, 0xef, 0xbc, 0xfb, 0x7f, 0xbe,
0xff, 0xa6, 0x1a, 0x4d, 0xa6, 0xda, 0x8d, 0x76, 0xb1 };
/*************************** DRY CONTACT CONTROL OF LIGHT & DOOR
* ***************************/
void IRAM_ATTR HOT RATGDOStore::isrDoorOpen(RATGDOStore *arg) {
unsigned long currentMillis = millis();
// Prevent ISR during the first 2 seconds after reboot
if (currentMillis < 2000)
return;
if (!arg->trigger_open.digital_read()) {
// save the time of the falling edge
arg->lastOpenDoorTime = currentMillis;
} else if (currentMillis - arg->lastOpenDoorTime > 500 && currentMillis - arg->lastOpenDoorTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
arg->dryContactDoorOpen = true;
}
}
void IRAM_ATTR HOT RATGDOStore::isrDoorClose(RATGDOStore *arg) {
unsigned long currentMillis = millis();
// Prevent ISR during the first 2 seconds after reboot
if (currentMillis < 2000)
return;
if (!arg->trigger_close.digital_read()) {
// save the time of the falling edge
arg->lastCloseDoorTime = currentMillis;
} else if (currentMillis - arg->lastCloseDoorTime > 500 && currentMillis - arg->lastCloseDoorTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
arg->dryContactDoorClose = true;
}
}
void IRAM_ATTR HOT RATGDOStore::isrLight(RATGDOStore *arg) {
unsigned long currentMillis = millis();
// Prevent ISR during the first 2 seconds after reboot
if (currentMillis < 2000)
return;
if (!arg->trigger_light.digital_read()) {
// save the time of the falling edge
arg->lastToggleLightTime = currentMillis;
} else if (currentMillis - arg->lastToggleLightTime > 500 && currentMillis - arg->lastToggleLightTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
arg->dryContactToggleLight = true;
}
}
// Fire on RISING edge of RPM1
void IRAM_ATTR HOT RATGDOStore::isrRPM1(RATGDOStore *arg) { arg->rpm1Pulsed = true; }
// Fire on RISING edge of RPM2
// When RPM1 HIGH on RPM2 rising edge, door closing:
// RPM1: __|--|___
// RPM2: ___|--|__
// When RPM1 LOW on RPM2 rising edge, door opening:
// RPM1: ___|--|__
// RPM2: __|--|___
void IRAM_ATTR HOT RATGDOStore::isrRPM2(RATGDOStore *arg)
{
// The encoder updates faster than the ESP wants to process, so by sampling
// every 5ms we get a more reliable curve The counter is behind the actual
// pulse counter, but it doesn't matter since we only need a reliable linear
// counter to determine the door direction
if (millis() - arg->lastPulse < 5) {
return;
}
// In rare situations, the rotary encoder can be parked so that RPM2
// continuously fires this ISR. This causes the door counter to change value
// even though the door isn't moving To solve this, check to see if RPM1
// pulsed. If not, do nothing. If yes, reset the pulsed flag
if (arg->rpm1Pulsed) {
arg->rpm1Pulsed = false;
} else {
return;
}
arg->lastPulse = millis();
// If the RPM1 state is different from the RPM2 state, then the door is
// opening
if (arg->input_rpm1.digital_read()) {
arg->doorPositionCounter--;
} else {
arg->doorPositionCounter++;
}
}
void IRAM_ATTR HOT RATGDOStore::isrObstruction(RATGDOStore *arg)
{
if (arg->input_obst.digital_read()) {
arg->lastObstructionHigh = millis();
} else {
arg->obstructionLowCount++;
}
}
void RATGDOComponent::setup()
{
this->pref_ = global_preferences->make_preference<int>(734874333U);
if (!this->pref_.load(&this->rollingCodeCounter)) {
this->rollingCodeCounter = 0;
}
this->output_gdo_pin_->setup();
this->store_.output_gdo = this->output_gdo_pin_->to_isr();
this->trigger_open_pin_->setup();
this->store_.trigger_open = this->trigger_open_pin_->to_isr();
this->trigger_close_pin_->setup();
this->store_.trigger_close = this->trigger_close_pin_->to_isr();
this->trigger_light_pin_->setup();
this->store_.trigger_light = this->trigger_light_pin_->to_isr();
this->status_door_pin_->setup();
this->store_.status_door = this->status_door_pin_->to_isr();
this->status_obst_pin_->setup();
this->store_.status_obst = this->status_obst_pin_->to_isr();
this->input_rpm1_pin_->setup();
this->store_.input_rpm1 = this->input_rpm1_pin_->to_isr();
this->input_rpm2_pin_->setup();
this->store_.input_rpm2 = this->input_rpm2_pin_->to_isr();
this->input_obst_pin_->setup();
this->swSerial.begin(9600, SWSERIAL_8N2, -1, this->output_gdo_pin_->get_pin(), true);
this->trigger_open_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->trigger_close_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->trigger_light_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->status_door_pin_->pin_mode(gpio::FLAG_OUTPUT);
this->status_obst_pin_->pin_mode(gpio::FLAG_OUTPUT);
this->input_rpm1_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP); // set to pullup to add support for reed switches
this->input_rpm2_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);// make sure pin doesn't float when using reed switch
// and fire interrupt by mistake
this->input_obst_pin_->pin_mode(gpio::FLAG_INPUT);
this->trigger_open_pin_->attach_interrupt(RATGDOStore::isrDoorOpen, &this->store_, gpio::INTERRUPT_ANY_EDGE);
this->trigger_close_pin_->attach_interrupt(RATGDOStore::isrDoorClose, &this->store_, gpio::INTERRUPT_ANY_EDGE);
this->trigger_light_pin_->attach_interrupt(RATGDOStore::isrLight, &this->store_, gpio::INTERRUPT_ANY_EDGE);
this->input_obst_pin_->attach_interrupt(RATGDOStore::isrObstruction, &this->store_, gpio::INTERRUPT_ANY_EDGE);
this->input_rpm1_pin_->attach_interrupt(RATGDOStore::isrRPM1, &this->store_, gpio::INTERRUPT_RISING_EDGE);
this->input_rpm2_pin_->attach_interrupt(RATGDOStore::isrRPM2, &this->store_, gpio::INTERRUPT_RISING_EDGE);
if (this->useRollingCodes_) {
ESP_LOGD(TAG, "Syncing rolling code counter after reboot...");
sync(); // if rolling codes are being used (rolling code counter > 0), send
// reboot/sync to the opener on startup
} else {
ESP_LOGD(TAG, "Rolling codes are disabled.");
}
}
void RATGDOComponent::loop()
{
obstructionLoop();
doorStateLoop();
dryContactLoop();
}
void RATGDOComponent::getRollingCode(const char* command)
{
uint64_t id = 0x539;
uint64_t fixed = 0;
uint32_t data = 0;
if (strcmp(command, "reboot1") == 0) {
fixed = 0x400000000;
data = 0x0000618b;
} else if (strcmp(command, "reboot2") == 0) {
fixed = 0;
data = 0x01009080;
} else if (strcmp(command, "reboot3") == 0) {
fixed = 0;
data = 0x0000b1a0;
} else if (strcmp(command, "reboot4") == 0) {
fixed = 0;
data = 0x01009080;
} else if (strcmp(command, "reboot5") == 0) {
fixed = 0x300000000;
data = 0x00008092;
} else if (strcmp(command, "reboot6") == 0) {
fixed = 0x300000000;
data = 0x00008092;
} else if (strcmp(command, "door1") == 0) {
fixed = 0x200000000;
data = 0x01018280;
} else if (strcmp(command, "door2") == 0) {
fixed = 0x200000000;
data = 0x01009280;
} else if (strcmp(command, "light") == 0) {
fixed = 0x200000000;
data = 0x00009281;
} else {
ESP_LOGD(TAG, "ERROR: Invalid command");
return;
}
fixed = fixed | id;
encode_wireline(this->rollingCodeCounter, fixed, data, this->rollingCode);
printRollingCode();
if (strcmp(command, "door1") != 0) { // door2 is created with same counter and should always be called after door1
this->rollingCodeCounter = (this->rollingCodeCounter + 1) & 0xfffffff;
}
return;
}
void RATGDOComponent::printRollingCode()
{
for (int i = 0; i < CODE_LENGTH; i++) {
if (this->rollingCode[i] <= 0x0f)
ESP_LOGD(TAG, "0");
ESP_LOGD(TAG, "%x", this->rollingCode[i]);
}
}
void RATGDOComponent::set_rolling_codes(bool useRollingCodes)
{
this->useRollingCodes_ = useRollingCodes;
}
/*************************** DETECTING THE DOOR STATE
* ***************************/
void RATGDOComponent::doorStateLoop()
{
static bool rotaryEncoderDetected = false;
static int lastDoorPositionCounter = 0;
static int lastDirectionChangeCounter = 0;
static int lastCounterMillis = 0;
// Handle reed switch
// This may need to be debounced, but so far in testing I haven't detected any
// bounces
if (!rotaryEncoderDetected) {
if (!this->input_rpm1_pin_->digital_read()) {
if (this->doorState != "reed_closed") {
ESP_LOGD(TAG, "Reed switch closed");
this->doorState = "reed_closed";
this->status_door_pin_->digital_write(true);
}
} else if (this->doorState != "reed_open") {
ESP_LOGD(TAG, "Reed switch open");
this->doorState = "reed_open";
this->status_door_pin_->digital_write(false);
}
}
// end reed switch handling
// If the previous and the current state of the RPM2 Signal are different,
// that means there is a rotary encoder detected and the door is moving
if (this->store_.doorPositionCounter != lastDoorPositionCounter) {
rotaryEncoderDetected = true; // this disables the reed switch handler
lastCounterMillis = millis();
ESP_LOGD(TAG, "Door Position: %d", this->store_.doorPositionCounter);
}
// Wait 5 pulses before updating to door opening status
if (this->store_.doorPositionCounter - lastDirectionChangeCounter > 5) {
if (this->doorState != "opening") {
ESP_LOGD(TAG, "Door Opening...");
}
lastDirectionChangeCounter = this->store_.doorPositionCounter;
this->doorState = "opening";
}
if (lastDirectionChangeCounter - this->store_.doorPositionCounter > 5) {
if (this->doorState != "closing") {
ESP_LOGD(TAG, "Door Closing...");
}
lastDirectionChangeCounter = this->store_.doorPositionCounter;
this->doorState = "closing";
}
// 250 millis after the last rotary encoder pulse, the door is stopped
if (millis() - lastCounterMillis > 250) {
// if the door was closing, and is now stopped, then the door is closed
if (this->doorState == "closing") {
this->doorState = "closed";
ESP_LOGD(TAG, "Closed");
this->status_door_pin_->digital_write(false);
}
// if the door was opening, and is now stopped, then the door is open
if (this->doorState == "opening") {
this->doorState = "open";
ESP_LOGD(TAG, "Open");
this->status_door_pin_->digital_write(true);
}
}
lastDoorPositionCounter = this->store_.doorPositionCounter;
}
// handle changes to the dry contact state
void RATGDOComponent::dryContactLoop()
{
if (this->store_.dryContactDoorOpen) {
ESP_LOGD(TAG, "Dry Contact: open the door");
this->store_.dryContactDoorOpen = false;
openDoor();
}
if (this->store_.dryContactDoorClose) {
ESP_LOGD(TAG, "Dry Contact: close the door");
this->store_.dryContactDoorClose = false;
closeDoor();
}
if (this->store_.dryContactToggleLight) {
ESP_LOGD(TAG, "Dry Contact: toggle the light");
this->store_.dryContactToggleLight = false;
toggleLight();
}
}
/*************************** OBSTRUCTION DETECTION ***************************/
void RATGDOComponent::obstructionLoop()
{
long currentMillis = millis();
static unsigned long lastMillis = 0;
// the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms),
// obstructed (HIGH), asleep (LOW) the transitions between awake and asleep
// are tricky because the voltage drops slowly when falling asleep and is high
// without pulses when waking up
// If at least 3 low pulses are counted within 50ms, the door is awake, not
// obstructed and we don't have to check anything else
// Every 50ms
if (currentMillis - lastMillis > 50) {
// check to see if we got between 3 and 8 low pulses on the line
if (this->store_.obstructionLowCount >= 3 && this->store_.obstructionLowCount <= 8) {
obstructionCleared();
// if there have been no pulses the line is steady high or low
} else if (this->obstructionLowCount == 0) {
// if the line is high and the last high pulse was more than 70ms ago,
// then there is an obstruction present
if (this->input_obst_pin_->digital_read() && currentMillis - this->store_.lastObstructionHigh > 70) {
obstructionDetected();
} else {
// asleep
}
}
lastMillis = currentMillis;
this->obstructionLowCount = 0;
}
}
void RATGDOComponent::obstructionDetected()
{
static unsigned long lastInterruptTime = 0;
unsigned long interruptTime = millis();
// Anything less than 100ms is a bounce and is ignored
if (interruptTime - lastInterruptTime > 250) {
this->doorIsObstructed = true;
this->status_obst_pin_->digital_write(true);
ESP_LOGD(TAG, "Obstruction Detected");
}
lastInterruptTime = interruptTime;
}
void RATGDOComponent::obstructionCleared()
{
if (this->doorIsObstructed) {
this->doorIsObstructed = false;
this->status_obst_pin_->digital_write(false);
ESP_LOGD(TAG, "Obstruction Cleared");
}
}
/************************* DOOR COMMUNICATION *************************/
/*
* Transmit a message to the door opener over uart1
* The TX1 pin is controlling a transistor, so the logic is inverted
* A HIGH state on TX1 will pull the 12v line LOW
*
* The opener requires a specific duration low/high pulse before it will accept
* a message
*/
void RATGDOComponent::transmit(const unsigned char * payload, unsigned int length)
{
this->output_gdo_pin_->digital_write(true); // pull the line high for 1305 micros so the
// door opener responds to the message
delayMicroseconds(1305);
this->output_gdo_pin_->digital_write(false); // bring the line low
delayMicroseconds(1260); // "LOW" pulse duration before the message start
this->swSerial.write(payload, length);
}
void RATGDOComponent::sync()
{
if (!this->useRollingCodes_)
return;
getRollingCode("reboot1");
transmit(this->rollingCode, CODE_LENGTH);
delay(45);
getRollingCode("reboot2");
transmit(this->rollingCode, CODE_LENGTH);
delay(45);
getRollingCode("reboot3");
transmit(this->rollingCode, CODE_LENGTH);
delay(45);
getRollingCode("reboot4");
transmit(this->rollingCode, CODE_LENGTH);
delay(45);
getRollingCode("reboot5");
transmit(this->rollingCode, CODE_LENGTH);
delay(45);
getRollingCode("reboot6");
transmit(this->rollingCode, CODE_LENGTH);
delay(45);
this->pref_.save(&this->rollingCodeCounter);
}
void RATGDOComponent::sendSyncCodes()
{
transmit(SYNC1, CODE_LENGTH);
delay(45);
transmit(SYNC2, CODE_LENGTH);
delay(45);
transmit(SYNC3, CODE_LENGTH);
delay(45);
transmit(SYNC4, CODE_LENGTH);
delay(45);
}
void RATGDOComponent::openDoor()
{
if (this->doorState == "open" || this->doorState == "opening") {
ESP_LOGD(TAG, "The door is already %s", doorState);
return;
}
this->doorState = "opening"; // It takes a couple of pulses to detect
// opening/closing. by setting here, we can avoid
// bouncing from rapidly repeated commands
if (this->useRollingCodes) {
getRollingCode("door1");
transmit(this->rollingCode, CODE_LENGTH);
delay(40);
getRollingCode("door2");
transmit(this->rollingCode, CODE_LENGTH);
this->pref_.save(&this->rollingCodeCounter);
} else {
sendSyncCodes();
ESP_LOGD(TAG, "door_code");
transmit(DOOR_CODE, CODE_LENGTH);
}
}
void RATGDOComponent::closeDoor()
{
if (this->doorState == "closed" || this->doorState == "closing") {
ESP_LOGD(TAG, "The door is already %s", this->doorState);
return;
}
this->doorState = "closing"; // It takes a couple of pulses to detect
// opening/closing. by setting here, we can avoid
// bouncing from rapidly repeated commands
if (this->useRollingCodes_) {
getRollingCode("door1");
transmit(this->rollingCode, CODE_LENGTH);
delay(40);
getRollingCode("door2");
transmit(this->rollingCode, CODE_LENGTH);
this->pref_.save(&this->rollingCodeCounter);
} else {
sendSyncCodes();
ESP_LOGD(TAG, "door_code");
transmit(DOOR_CODE, CODE_LENGTH);
}
}
void RATGDOComponent::toggleLight()
{
if (this->useRollingCodes) {
getRollingCode("light");
transmit(this->rollingCode, CODE_LENGTH);
this->pref_.save(&this->rollingCodeCounter);
} else {
sendSyncCodes();
ESP_LOGD(TAG, "light_code");
transmit(LIGHT_CODE, CODE_LENGTH);
}
}
} // namespace ratgdo
} // namespace esphome