esphome-ratgdo/components/ratgdo/ratgdo.cpp

558 lines
19 KiB
C++

/************************************
* Rage
* Against
* The
* Garage
* Door
* Opener
*
* Copyright (C) 2022 Paul Wieland
*
* GNU GENERAL PUBLIC LICENSE
************************************/
#include "ratgdo.h"
#include "esphome/core/log.h"
namespace esphome {
namespace ratgdo {
static const char* const TAG = "ratgdo";
/*** Static Codes ***/
static const unsigned char SYNC1[] = { 0x55, 0x01, 0x00, 0x61, 0x12, 0x49, 0x2c, 0x92, 0x5b, 0x24,
0x96, 0x86, 0x0b, 0x65, 0x96, 0xd9, 0x8f, 0x26, 0x4a };
static const unsigned char SYNC2[] = { 0x55, 0x01, 0x00, 0x08, 0x34, 0x93, 0x49, 0xb4, 0x92, 0x4d,
0x20, 0x26, 0x1b, 0x4d, 0xb4, 0xdb, 0xad, 0x76, 0x93 };
static const unsigned char SYNC3[] = { 0x55, 0x01, 0x00, 0x06, 0x1b, 0x2c, 0xbf, 0x4b, 0x6d, 0xb6,
0x4b, 0x18, 0x20, 0x92, 0x09, 0x20, 0xf2, 0x11, 0x2c };
static const unsigned char SYNC4[] = { 0x55, 0x01, 0x00, 0x95, 0x29, 0x36, 0x91, 0x29, 0x36, 0x9a,
0x69, 0x05, 0x2f, 0xbe, 0xdf, 0x6d, 0x16, 0xcb, 0xe7 };
static const unsigned char DOOR_CODE[] = { 0x55, 0x01, 0x00, 0x94, 0x3f, 0xef, 0xbc, 0xfb, 0x7f, 0xbe,
0xfc, 0xa6, 0x1a, 0x4d, 0xa6, 0xda, 0x8d, 0x36, 0xb3 };
static const unsigned char LIGHT_CODE[] = { 0x55, 0x01, 0x00, 0x94, 0x3f, 0xef, 0xbc, 0xfb, 0x7f, 0xbe,
0xff, 0xa6, 0x1a, 0x4d, 0xa6, 0xda, 0x8d, 0x76, 0xb1 };
static const int STARTUP_DELAY = 2000; // delay before enabling interrupts
/*************************** DRY CONTACT CONTROL OF LIGHT & DOOR
* ***************************/
void IRAM_ATTR HOT RATGDOStore::isrDoorOpen(RATGDOStore *arg) {
unsigned long currentMillis = millis();
// Prevent ISR during the first 2 seconds after reboot
if (currentMillis < STARTUP_DELAY)
return;
if (!arg->trigger_open.digital_read()) {
// save the time of the falling edge
arg->lastOpenDoorTime = currentMillis;
} else if (currentMillis - arg->lastOpenDoorTime > 500 && currentMillis - arg->lastOpenDoorTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
arg->dryContactDoorOpen = true;
}
}
void IRAM_ATTR HOT RATGDOStore::isrDoorClose(RATGDOStore *arg) {
unsigned long currentMillis = millis();
// Prevent ISR during the first 2 seconds after reboot
if (currentMillis < STARTUP_DELAY)
return;
if (!arg->trigger_close.digital_read()) {
// save the time of the falling edge
arg->lastCloseDoorTime = currentMillis;
} else if (currentMillis - arg->lastCloseDoorTime > 500 && currentMillis - arg->lastCloseDoorTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
arg->dryContactDoorClose = true;
}
}
void IRAM_ATTR HOT RATGDOStore::isrLight(RATGDOStore *arg) {
unsigned long currentMillis = millis();
// Prevent ISR during the first 2 seconds after reboot
if (currentMillis < STARTUP_DELAY)
return;
if (!arg->trigger_light.digital_read()) {
// save the time of the falling edge
arg->lastToggleLightTime = currentMillis;
} else if (currentMillis - arg->lastToggleLightTime > 500 && currentMillis - arg->lastToggleLightTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
arg->dryContactToggleLight = true;
}
}
void IRAM_ATTR HOT RATGDOStore::isrObstruction(RATGDOStore *arg)
{
if (arg->input_obst.digital_read()) {
ESP_LOGD(TAG, "isrObstruction HIGH");
arg->lastObstructionHigh = millis();
} else {
ESP_LOGD(TAG, "isrObstruction LOW");
arg->obstructionLowCount++;
}
}
void RATGDOComponent::setup()
{
this->pref_ = global_preferences->make_preference<int>(734874333U);
if (!this->pref_.load(&this->rollingCodeCounter)) {
this->rollingCodeCounter = 0;
}
this->output_gdo_pin_->setup();
this->store_.output_gdo = this->output_gdo_pin_->to_isr();
this->input_gdo_pin_->setup();
this->store_.input_gdo = this->input_gdo_pin_->to_isr();
this->input_obst_pin_->setup();
this->store_.input_obst = this->input_obst_pin_->to_isr();
this->trigger_open_pin_->setup();
this->store_.trigger_open = this->trigger_open_pin_->to_isr();
this->trigger_close_pin_->setup();
this->store_.trigger_close = this->trigger_close_pin_->to_isr();
this->trigger_light_pin_->setup();
this->store_.trigger_light = this->trigger_light_pin_->to_isr();
this->status_door_pin_->setup();
this->store_.status_door = this->status_door_pin_->to_isr();
this->status_obst_pin_->setup();
this->store_.status_obst = this->status_obst_pin_->to_isr();
this->trigger_open_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->trigger_close_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->trigger_light_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->status_door_pin_->pin_mode(gpio::FLAG_OUTPUT);
this->status_obst_pin_->pin_mode(gpio::FLAG_OUTPUT);
this->output_gdo_pin_->pin_mode(gpio::FLAG_OUTPUT);
this->input_gdo_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
this->input_obst_pin_->pin_mode(gpio::FLAG_INPUT);
this->swSerial.begin(9600, SWSERIAL_8N1, this->input_gdo_pin_->get_pin(), this->output_gdo_pin_->get_pin(), true);
this->trigger_open_pin_->attach_interrupt(RATGDOStore::isrDoorOpen, &this->store_, gpio::INTERRUPT_ANY_EDGE);
this->trigger_close_pin_->attach_interrupt(RATGDOStore::isrDoorClose, &this->store_, gpio::INTERRUPT_ANY_EDGE);
this->trigger_light_pin_->attach_interrupt(RATGDOStore::isrLight, &this->store_, gpio::INTERRUPT_ANY_EDGE);
this->input_obst_pin_->attach_interrupt(RATGDOStore::isrObstruction, &this->store_, gpio::INTERRUPT_ANY_EDGE);
if (this->useRollingCodes_) {
ESP_LOGD(TAG, "Syncing rolling code counter after reboot...");
sync(); // if rolling codes are being used (rolling code counter > 0), send
// reboot/sync to the opener on startup
} else {
ESP_LOGD(TAG, "Rolling codes are disabled.");
}
}
void RATGDOComponent::loop()
{
obstructionLoop();
gdoStateLoop();
dryContactLoop();
statusUpdateLoop();
//ESP_LOGD(TAG, "Door State: %s", this->doorState.c_str());
}
void RATGDOComponent::readRollingCode(uint8_t &door, uint8_t &light, uint8_t &lock, uint8_t &motion, uint8_t &obstruction){
uint32_t rolling = 0;
uint64_t fixed = 0;
uint32_t data = 0;
uint16_t cmd = 0;
uint8_t nibble = 0;
uint8_t byte1 = 0;
uint8_t byte2 = 0;
decode_wireline(this->rxRollingCode, &rolling, &fixed, &data);
cmd = ((fixed >> 24) & 0xf00) | (data & 0xff);
nibble = (data >> 8) & 0xf;
byte1 = (data >> 16) & 0xff;
byte2 = (data >> 24) & 0xff;
if(cmd == 0x81){
door = nibble;
light = (byte2 >> 1) & 1;
lock = byte2 & 1;
motion = 0; // when the status message is read, reset motion state to 0|clear
// obstruction = (byte1 >> 6) & 1; // unreliable due to the time it takes to register an obstruction
}else if(cmd == 0x281){
light ^= 1; // toggle bit
}else if(cmd == 0x84){
}else if(cmd == 0x285){
motion = 1; // toggle bit
}
}
void RATGDOComponent::getRollingCode(const char* command)
{
uint64_t id = 0x539;
uint64_t fixed = 0;
uint32_t data = 0;
if (strcmp(command, "reboot1") == 0) {
fixed = 0x400000000;
data = 0x0000618b;
} else if (strcmp(command, "reboot2") == 0) {
fixed = 0;
data = 0x01009080;
} else if (strcmp(command, "reboot3") == 0) {
fixed = 0;
data = 0x0000b1a0;
} else if (strcmp(command, "reboot4") == 0) {
fixed = 0;
data = 0x01009080;
} else if (strcmp(command, "reboot5") == 0) {
fixed = 0x300000000;
data = 0x00008092;
} else if (strcmp(command, "reboot6") == 0) {
fixed = 0x300000000;
data = 0x00008092;
} else if (strcmp(command, "door1") == 0) {
fixed = 0x200000000;
data = 0x01018280;
} else if (strcmp(command, "door2") == 0) {
fixed = 0x200000000;
data = 0x01009280;
} else if (strcmp(command, "light") == 0) {
fixed = 0x200000000;
data = 0x00009281;
} else {
ESP_LOGD(TAG, "ERROR: Invalid command");
return;
}
fixed = fixed | id;
encode_wireline(this->rollingCodeCounter, fixed, data, this->txRollingCode);
printRollingCode();
if (strcmp(command, "door1") != 0) { // door2 is created with same counter and should always be called after door1
this->rollingCodeCounter = (this->rollingCodeCounter + 1) & 0xfffffff;
}
return;
}
void RATGDOComponent::printRollingCode()
{
for (int i = 0; i < CODE_LENGTH; i++) {
if (this->txRollingCode[i] <= 0x0f)
ESP_LOGD(TAG, "0");
ESP_LOGD(TAG, "%x", this->txRollingCode[i]);
}
}
void RATGDOComponent::set_rolling_codes(bool useRollingCodes)
{
this->useRollingCodes_ = useRollingCodes;
}
// handle changes to the dry contact state
void RATGDOComponent::dryContactLoop()
{
if (this->store_.dryContactDoorOpen) {
ESP_LOGD(TAG, "Dry Contact: open the door");
this->store_.dryContactDoorOpen = false;
openDoor();
}
if (this->store_.dryContactDoorClose) {
ESP_LOGD(TAG, "Dry Contact: close the door");
this->store_.dryContactDoorClose = false;
closeDoor();
}
if (this->store_.dryContactToggleLight) {
ESP_LOGD(TAG, "Dry Contact: toggle the light");
this->store_.dryContactToggleLight = false;
toggleLight();
}
}
/*************************** OBSTRUCTION DETECTION ***************************/
void RATGDOComponent::obstructionLoop()
{
long currentMillis = millis();
static unsigned long lastMillis = 0;
// the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), obstructed (HIGH), asleep (LOW)
// the transitions between awake and asleep are tricky because the voltage drops slowly when falling asleep
// and is high without pulses when waking up
// If at least 3 low pulses are counted within 50ms, the door is awake, not obstructed and we don't have to check anything else
// Every 50ms
if(currentMillis - lastMillis > 50){
// check to see if we got between 3 and 8 low pulses on the line
if(this->store_.obstructionLowCount >= 3 && this->store_.obstructionLowCount <= 8){
// obstructionCleared();
this->store_.obstructionState = 1;
// if there have been no pulses the line is steady high or low
}else if(this->store_.obstructionLowCount == 0){
// if the line is high and the last high pulse was more than 70ms ago, then there is an obstruction present
if(this->input_obst_pin_->digital_read() && currentMillis - this->store_.lastObstructionHigh > 70){
this->store_.obstructionState = 0;
// obstructionDetected();
}else{
// asleep
}
}
lastMillis = currentMillis;
this->store_.obstructionLowCount = 0;
}
}
void RATGDOComponent::gdoStateLoop(){
if(!this->swSerial.available()) return;
uint8_t serData = this->swSerial.read();
static uint32_t msgStart;
static bool reading = false;
static uint16_t byteCount = 0;
if(!reading){
// shift serial byte onto msg start
msgStart <<= 8;
msgStart |= serData;
// truncate to 3 bytes
msgStart &= 0x00FFFFFF;
// if we are at the start of a message, capture the next 16 bytes
if(msgStart == 0x550100){
byteCount = 3;
rxRollingCode[0] = 0x55;
rxRollingCode[1] = 0x01;
rxRollingCode[2] = 0x00;
reading = true;
return;
}
}
if(reading){
this->rxRollingCode[byteCount] = serData;
byteCount++;
if(byteCount == 19){
reading = false;
msgStart = 0;
byteCount = 0;
readRollingCode(this->store_.doorState, this->store_.lightState, this->store_.lockState, this->store_.motionState, this->store_.obstructionState);
}
}
}
void RATGDOComponent::statusUpdateLoop(){
// initialize to unknown
static uint8_t previousDoorState = 0;
static uint8_t previousLightState = 2;
static uint8_t previousLockState = 2;
static uint8_t previousObstructionState = 2;
if(this->store_.doorState != previousDoorState) sendDoorStatus();
if(this->store_.lightState != previousLightState) sendLightStatus();
if(this->store_.lockState != previousLockState) sendLockStatus();
if(this->store_.obstructionState != previousObstructionState) sendObstructionStatus();
if(this->store_.motionState == 1){
sendMotionStatus();
this->store_.motionState = 0;
}
previousDoorState = this->store_.doorState;
previousLightState = this->store_.lightState;
previousLockState = this->store_.lockState;
previousObstructionState = this->store_.obstructionState;
}
void RATGDOComponent::sendDoorStatus(){
ESP_LOGD(TAG, "Door state %d", this->store_.doorState);
this->status_door_pin_->digital_write(this->store_.doorState == 1);
}
void RATGDOComponent::sendLightStatus(){
ESP_LOGD(TAG, "Light state %d", this->store_.lightState);
}
void RATGDOComponent::sendLockStatus(){
ESP_LOGD(TAG, "Lock state %d", this->store_.lockState);
}
void RATGDOComponent::sendMotionStatus(){
ESP_LOGD(TAG, "Motion state %d", this->store_.motionState);
this->store_.motionState = 0; // reset motion state
}
void RATGDOComponent::sendObstructionStatus(){
ESP_LOGD(TAG, "Obstruction state %d", this->store_.obstructionState);
this->status_obst_pin_->digital_write(this->store_.obstructionState == 0);
}
/************************* DOOR COMMUNICATION *************************/
/*
* Transmit a message to the door opener over uart1
* The TX1 pin is controlling a transistor, so the logic is inverted
* A HIGH state on TX1 will pull the 12v line LOW
*
* The opener requires a specific duration low/high pulse before it will accept
* a message
*/
void RATGDOComponent::transmit(const unsigned char * payload)
{
this->output_gdo_pin_->digital_write(true); // pull the line high for 1305 micros so the
// door opener responds to the message
delayMicroseconds(1305);
this->output_gdo_pin_->digital_write(false); // bring the line low
delayMicroseconds(1260); // "LOW" pulse duration before the message start
this->swSerial.write(payload, CODE_LENGTH);
}
void RATGDOComponent::sync()
{
if (!this->useRollingCodes_)
return;
getRollingCode("reboot1");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot2");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot3");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot4");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot5");
transmit(this->txRollingCode);
delay(65);
getRollingCode("reboot6");
transmit(this->txRollingCode);
delay(65);
this->pref_.save(&this->rollingCodeCounter);
}
void RATGDOComponent::sendSyncCodes()
{
transmit(SYNC1);
delay(65);
transmit(SYNC2);
delay(65);
transmit(SYNC3);
delay(65);
transmit(SYNC4);
delay(65);
}
void RATGDOComponent::openDoor()
{
if(this->doorStates[this->store_.doorState] == "open" || doorStates[this->store_.doorState] == "opening"){
ESP_LOGD(TAG, "The door is already %s", this->doorStates[this->store_.doorState]);
return;
}
toggleDoor();
}
void RATGDOComponent::closeDoor()
{
if(this->doorStates[this->store_.doorState] == "closed" || doorStates[this->store_.doorState] == "closing"){
ESP_LOGD(TAG, "The door is already %s", this->doorStates[this->store_.doorState]);
return;
}
toggleDoor();
}
void RATGDOComponent::stopDoor(){
if(this->doorStates[this->store_.doorState] == "opening" || doorStates[this->store_.doorState] == "closing"){
toggleDoor();
}else{
Serial.print("The door is not moving.");
}
}
void RATGDOComponent::toggleDoor()
{
if (this->useRollingCodes_) {
getRollingCode("door1");
transmit(this->txRollingCode);
delay(40);
getRollingCode("door2");
transmit(this->txRollingCode);
this->pref_.save(&this->rollingCodeCounter);
} else {
sendSyncCodes();
ESP_LOGD(TAG, "door_code");
transmit(DOOR_CODE);
}
}
void RATGDOComponent::toggleLight()
{
if (this->useRollingCodes_) {
getRollingCode("light");
transmit(this->txRollingCode);
this->pref_.save(&this->rollingCodeCounter);
} else {
sendSyncCodes();
ESP_LOGD(TAG, "light_code");
transmit(LIGHT_CODE);
}
}
// Lock functions
void RATGDOComponent::lock(){
if(this->lockStates[this->store_.lockState] == "locked"){
ESP_LOGD(TAG, "already locked");
}else{
toggleLock();
}
}
void RATGDOComponent::unlock(){
if(this->lockStates[this->store_.lockState] == "unlocked"){
ESP_LOGD(TAG, "already unlocked");
}else{
toggleLock();
}
}
void RATGDOComponent::toggleLock(){
getRollingCode("lock");
transmit(this->txRollingCode);
this->pref_.save(&this->rollingCodeCounter);
}
} // namespace ratgdo
} // namespace esphome