esphome-ratgdo/components/ratgdo/ratgdo.cpp

542 lines
16 KiB
C++

/************************************
* Rage
* Against
* The
* Garage
* Door
* Opener
*
* Copyright (C) 2022 Paul Wieland
*
* GNU GENERAL PUBLIC LICENSE
************************************/
#include "ratgdo.h"
#include "esphome/core/log.h"
namespace esphome {
namespace ratgdo {
static const char *const TAG = "ratgdo";
/*** Static Codes ***/
static const byte SYNC1[] = {0x55, 0x01, 0x00, 0x61, 0x12, 0x49, 0x2c, 0x92, 0x5b, 0x24,
0x96, 0x86, 0x0b, 0x65, 0x96, 0xd9, 0x8f, 0x26, 0x4a};
static const byte SYNC2[] = {0x55, 0x01, 0x00, 0x08, 0x34, 0x93, 0x49, 0xb4, 0x92, 0x4d,
0x20, 0x26, 0x1b, 0x4d, 0xb4, 0xdb, 0xad, 0x76, 0x93};
static const byte SYNC3[] = {0x55, 0x01, 0x00, 0x06, 0x1b, 0x2c, 0xbf, 0x4b, 0x6d, 0xb6,
0x4b, 0x18, 0x20, 0x92, 0x09, 0x20, 0xf2, 0x11, 0x2c};
static const byte SYNC4[] = {0x55, 0x01, 0x00, 0x95, 0x29, 0x36, 0x91, 0x29, 0x36, 0x9a,
0x69, 0x05, 0x2f, 0xbe, 0xdf, 0x6d, 0x16, 0xcb, 0xe7};
static const byte *SYNC_CODE[] = {SYNC1, SYNC2, SYNC3, SYNC4};
static const byte DOOR_CODE[] = {0x55, 0x01, 0x00, 0x94, 0x3f, 0xef, 0xbc, 0xfb, 0x7f, 0xbe,
0xfc, 0xa6, 0x1a, 0x4d, 0xa6, 0xda, 0x8d, 0x36, 0xb3};
static const byte LIGHT_CODE[] = {0x55, 0x01, 0x00, 0x94, 0x3f, 0xef, 0xbc, 0xfb, 0x7f, 0xbe,
0xff, 0xa6, 0x1a, 0x4d, 0xa6, 0xda, 0x8d, 0x76, 0xb1};
void RATGDOComponent::setup() {
this->pref_ = global_preferences->make_preference<int>(734874333U);
if (!this->pref_.load(&this->rollingCodeCounter)) {
this->rollingCodeCounter = 0;
}
this->swSerial.begin(9600, SWSERIAL_8N2, -1, OUTPUT_GDO, true);
pinMode(TRIGGER_OPEN, INPUT_PULLUP);
pinMode(TRIGGER_CLOSE, INPUT_PULLUP);
pinMode(TRIGGER_LIGHT, INPUT_PULLUP);
pinMode(STATUS_DOOR, OUTPUT);
pinMode(STATUS_OBST, OUTPUT);
pinMode(INPUT_RPM1,
INPUT_PULLUP); // set to pullup to add support for reed switches
pinMode(INPUT_RPM2,
INPUT_PULLUP); // make sure pin doesn't float when using reed switch
// and fire interrupt by mistake
pinMode(INPUT_OBST, INPUT);
attachInterrupt(TRIGGER_OPEN, isrDoorOpen, CHANGE);
attachInterrupt(TRIGGER_CLOSE, isrDoorClose, CHANGE);
attachInterrupt(TRIGGER_LIGHT, isrLight, CHANGE);
attachInterrupt(INPUT_OBST, isrObstruction, CHANGE);
attachInterrupt(INPUT_RPM1, isrRPM1, RISING);
attachInterrupt(INPUT_RPM2, isrRPM2, RISING);
LittleFS.begin();
readCounterFromFlash();
if (this->useRollingCodes_) {
ESP_LOGD(TAG, "Syncing rolling code counter after reboot...");
sync(); // if rolling codes are being used (rolling code counter > 0), send
// reboot/sync to the opener on startup
} else {
ESP_LOGD(TAG, "Rolling codes are disabled.");
}
}
void RATGDOComponent::loop() {
obstructionLoop();
doorStateLoop();
dryContactLoop();
}
void RATGDOComponent::set_rolling_codes(bool useRollingCodes) {
this->useRollingCodes_ = useRollingCodes;
}
/*************************** DETECTING THE DOOR STATE
* ***************************/
void RATGDOComponent::doorStateLoop() {
static bool rotaryEncoderDetected = false;
static int lastDoorPositionCounter = 0;
static int lastDirectionChangeCounter = 0;
static int lastCounterMillis = 0;
// Handle reed switch
// This may need to be debounced, but so far in testing I haven't detected any
// bounces
if (!rotaryEncoderDetected) {
if (digitalRead(INPUT_RPM1) == LOW) {
if (doorState != "reed_closed") {
ESP_LOGD(TAG, "Reed switch closed");
this->doorState = "reed_closed";
digitalWrite(STATUS_DOOR, HIGH);
}
} else if (doorState != "reed_open") {
ESP_LOGD(TAG, "Reed switch open");
this->doorState = "reed_open";
digitalWrite(STATUS_DOOR, LOW);
}
}
// end reed switch handling
// If the previous and the current state of the RPM2 Signal are different,
// that means there is a rotary encoder detected and the door is moving
if (this->doorPositionCounter != lastDoorPositionCounter) {
rotaryEncoderDetected = true; // this disables the reed switch handler
lastCounterMillis = millis();
ESP_LOGD(TAG, "Door Position: %d", doorPositionCounter);
}
// Wait 5 pulses before updating to door opening status
if (doorPositionCounter - lastDirectionChangeCounter > 5) {
if (this->doorState != "opening") {
ESP_LOGD(TAG, "Door Opening...");
}
lastDirectionChangeCounter = this->doorPositionCounter;
this->doorState = "opening";
}
if (this->lastDirectionChangeCounter - this->doorPositionCounter > 5) {
if (this->doorState != "closing") {
ESP_LOGD(TAG, "Door Closing...");
}
lastDirectionChangeCounter = this->doorPositionCounter;
this->doorState = "closing";
}
// 250 millis after the last rotary encoder pulse, the door is stopped
if (millis() - lastCounterMillis > 250) {
// if the door was closing, and is now stopped, then the door is closed
if (this->doorState == "closing") {
this->doorState = "closed";
ESP_LOGD(TAG, "Closed");
digitalWrite(STATUS_DOOR, LOW);
}
// if the door was opening, and is now stopped, then the door is open
if (this->doorState == "opening") {
this->doorState = "open";
ESP_LOGD(TAG, "Open");
digitalWrite(STATUS_DOOR, HIGH);
}
}
lastDoorPositionCounter = doorPositionCounter;
}
/*************************** DRY CONTACT CONTROL OF LIGHT & DOOR
* ***************************/
void IRAM_ATTR RATGDOComponent::isrDebounce(const char *type) {
static unsigned long lastOpenDoorTime = 0;
static unsigned long lastCloseDoorTime = 0;
static unsigned long lastToggleLightTime = 0;
unsigned long currentMillis = millis();
// Prevent ISR during the first 2 seconds after reboot
if (currentMillis < 2000)
return;
if (strcmp(type, "openDoor") == 0) {
if (digitalRead(TRIGGER_OPEN) == LOW) {
// save the time of the falling edge
this->lastOpenDoorTime = currentMillis;
} else if (currentMillis - lastOpenDoorTime > 500 &&
currentMillis - lastOpenDoorTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
this->dryContactDoorOpen = true;
}
}
if (strcmp(type, "closeDoor") == 0) {
if (digitalRead(TRIGGER_CLOSE) == LOW) {
// save the time of the falling edge
lastCloseDoorTime = currentMillis;
} else if (currentMillis - lastCloseDoorTime > 500 &&
currentMillis - lastCloseDoorTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
this->dryContactDoorClose = true;
}
}
if (strcmp(type, "toggleLight") == 0) {
if (digitalRead(TRIGGER_LIGHT) == LOW) {
// save the time of the falling edge
this->lastToggleLightTime = currentMillis;
} else if (currentMillis - lastToggleLightTime > 500 &&
currentMillis - lastToggleLightTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
this->dryContactToggleLight = true;
}
}
}
void IRAM_ATTR RATGDOComponent::isrDoorOpen() { isrDebounce("openDoor"); }
void IRAM_ATTR RATGDOComponent::isrDoorClose() { isrDebounce("closeDoor"); }
void IRAM_ATTR RATGDOComponent::isrLight() { isrDebounce("toggleLight"); }
// Fire on RISING edge of RPM1
void IRAM_ATTR RATGDOComponent::isrRPM1() { this->rpm1Pulsed = true; }
// Fire on RISING edge of RPM2
// When RPM1 HIGH on RPM2 rising edge, door closing:
// RPM1: __|--|___
// RPM2: ___|--|__
// When RPM1 LOW on RPM2 rising edge, door opening:
// RPM1: ___|--|__
// RPM2: __|--|___
void IRAM_ATTR RATGDOComponent::isrRPM2() {
// The encoder updates faster than the ESP wants to process, so by sampling
// every 5ms we get a more reliable curve The counter is behind the actual
// pulse counter, but it doesn't matter since we only need a reliable linear
// counter to determine the door direction
static unsigned long lastPulse = 0;
unsigned long currentMillis = millis();
if (currentMillis - lastPulse < 5) {
return;
}
// In rare situations, the rotary encoder can be parked so that RPM2
// continuously fires this ISR. This causes the door counter to change value
// even though the door isn't moving To solve this, check to see if RPM1
// pulsed. If not, do nothing. If yes, reset the pulsed flag
if (this->rpm1Pulsed) {
this->rpm1Pulsed = false;
} else {
return;
}
lastPulse = millis();
// If the RPM1 state is different from the RPM2 state, then the door is
// opening
if (digitalRead(INPUT_RPM1)) {
this->doorPositionCounter--;
} else {
this->doorPositionCounter++;
}
}
// handle changes to the dry contact state
void RATGDOComponent::dryContactLoop() {
if (this->dryContactDoorOpen) {
ESP_LOGD(TAG, "Dry Contact: open the door");
this->dryContactDoorOpen = false;
openDoor();
}
if (this->dryContactDoorClose) {
ESP_LOGD(TAG, "Dry Contact: close the door");
this->dryContactDoorClose = false;
closeDoor();
}
if (this->dryContactToggleLight) {
ESP_LOGD(TAG, "Dry Contact: toggle the light");
this->dryContactToggleLight = false;
toggleLight();
}
}
/*************************** OBSTRUCTION DETECTION ***************************/
void IRAM_ATTR RATGDOComponent::isrObstruction() {
if (digitalRead(INPUT_OBST)) {
this->lastObstructionHigh = millis();
} else {
this->obstructionLowCount++;
}
}
void RATGDOComponent::obstructionLoop() {
long currentMillis = millis();
static unsigned long lastMillis = 0;
// the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms),
// obstructed (HIGH), asleep (LOW) the transitions between awake and asleep
// are tricky because the voltage drops slowly when falling asleep and is high
// without pulses when waking up
// If at least 3 low pulses are counted within 50ms, the door is awake, not
// obstructed and we don't have to check anything else
// Every 50ms
if (currentMillis - lastMillis > 50) {
// check to see if we got between 3 and 8 low pulses on the line
if (this->obstructionLowCount >= 3 && this->obstructionLowCount <= 8) {
obstructionCleared();
// if there have been no pulses the line is steady high or low
} else if (this->obstructionLowCount == 0) {
// if the line is high and the last high pulse was more than 70ms ago,
// then there is an obstruction present
if (digitalRead(INPUT_OBST) && currentMillis - this->lastObstructionHigh > 70) {
obstructionDetected();
} else {
// asleep
}
}
lastMillis = currentMillis;
this->obstructionLowCount = 0;
}
}
void RATGDOComponent::obstructionDetected() {
static unsigned long lastInterruptTime = 0;
unsigned long interruptTime = millis();
// Anything less than 100ms is a bounce and is ignored
if (interruptTime - lastInterruptTime > 250) {
this->doorIsObstructed = true;
digitalWrite(STATUS_OBST, HIGH);
ESP_LOGD(TAG, "Obstruction Detected");
}
lastInterruptTime = interruptTime;
}
void RATGDOComponent::obstructionCleared() {
if (this->doorIsObstructed) {
this->doorIsObstructed = false;
digitalWrite(STATUS_OBST, LOW);
ESP_LOGD(TAG, "Obstruction Cleared");
}
}
void RATGDOComponent::sendDoorStatus() {
ESP_LOGD(TAG, "Door state %s", this->doorState);
}
void RATGDOComponent::sendCurrentCounter() {
String msg = String(this->rollingCodeCounter);
ESP_LOGD(TAG, "Current counter %d", this->rollingCodeCounter);
}
/************************* DOOR COMMUNICATION *************************/
/*
* Transmit a message to the door opener over uart1
* The TX1 pin is controlling a transistor, so the logic is inverted
* A HIGH state on TX1 will pull the 12v line LOW
*
* The opener requires a specific duration low/high pulse before it will accept
* a message
*/
void RATGDOComponent::transmit(byte *payload, unsigned int length) {
digitalWrite(OUTPUT_GDO, HIGH); // pull the line high for 1305 micros so the
// door opener responds to the message
delayMicroseconds(1305);
digitalWrite(OUTPUT_GDO, LOW); // bring the line low
delayMicroseconds(1260); // "LOW" pulse duration before the message start
this->swSerial.write(payload, length);
}
void RATGDOComponent::sync() {
if (!this->useRollingCodes_)
return;
getRollingCode("reboot1");
transmit(this->rollingCode, CODE_LENGTH);
delay(45);
getRollingCode("reboot2");
transmit(this->rollingCode, CODE_LENGTH);
delay(45);
getRollingCode("reboot3");
transmit(this->rollingCode, CODE_LENGTH);
delay(45);
getRollingCode("reboot4");
transmit(this->rollingCode, CODE_LENGTH);
delay(45);
getRollingCode("reboot5");
transmit(this->rollingCode, CODE_LENGTH);
delay(45);
getRollingCode("reboot6");
transmit(this->rollingCode, CODE_LENGTH);
delay(45);
writeCounterToFlash();
}
void RATGDOComponent::openDoor() {
if (this->doorState == "open" || this->doorState == "opening") {
ESP_LOGD(TAG, "The door is already %s", doorState);
return;
}
this->doorState = "opening"; // It takes a couple of pulses to detect
// opening/closing. by setting here, we can avoid
// bouncing from rapidly repeated commands
if (this->useRollingCodes) {
getRollingCode("door1");
transmit(this->rollingCode, CODE_LENGTH);
delay(40);
getRollingCode("door2");
transmit(this->rollingCode, CODE_LENGTH);
writeCounterToFlash();
} else {
for (int i = 0; i < 4; i++) {
ESP_LOGD(TAG, "sync_code[%d]", i);
transmit(SYNC_CODE[i], CODE_LENGTH);
delay(45);
}
ESP_LOGD(TAG, "door_code")
transmit(DOOR_CODE, CODE_LENGTH);
}
}
void RATGDOComponent::closeDoor() {
if (this->doorState == "closed" || this->doorState == "closing") {
ESP_LOGD(TAG, "The door is already %s", this->doorState);
return;
}
this->doorState = "closing"; // It takes a couple of pulses to detect
// opening/closing. by setting here, we can avoid
// bouncing from rapidly repeated commands
if (this->useRollingCodes_) {
getRollingCode("door1");
transmit(this->rollingCode, CODE_LENGTH);
delay(40);
getRollingCode("door2");
transmit(this->rollingCode, CODE_LENGTH);
writeCounterToFlash();
} else {
for (int i = 0; i < 4; i++) {
ESP_LOGD(TAG, "sync_code[%d]", i);
transmit(SYNC_CODE[i], CODE_LENGTH);
delay(45);
}
ESP_LOGD(TAG, "door_code")
transmit(DOOR_CODE, CODE_LENGTH);
}
}
void RATGDOComponent::toggleLight() {
if (this->useRollingCodes) {
getRollingCode("light");
transmit(this->rollingCode, CODE_LENGTH);
writeCounterToFlash();
} else {
for (int i = 0; i < 4; i++) {
ESP_LOGD(TAG, "sync_code[%d]", i);
transmit(SYNC_CODE[i], CODE_LENGTH);
delay(45);
}
ESP_LOGD(TAG, "light_code")
transmit(LIGHT_CODE, CODE_LENGTH);
}
}
void RATGDOComponent::getRollingCode(const char *command, int rollingCodeCounter){
uint64_t id = 0x539;
uint64_t fixed = 0;
uint32_t data = 0;
if(strcmp(command,"reboot1") == 0){
fixed = 0x400000000;
data = 0x0000618b;
}else if(strcmp(command,"reboot2") == 0){
fixed = 0;
data = 0x01009080;
}else if(strcmp(command,"reboot3") == 0){
fixed = 0;
data = 0x0000b1a0;
}else if(strcmp(command,"reboot4") == 0){
fixed = 0;
data = 0x01009080;
}else if(strcmp(command,"reboot5") == 0){
fixed = 0x300000000;
data = 0x00008092;
}else if(strcmp(command,"reboot6") == 0){
fixed = 0x300000000;
data = 0x00008092;
}else if(strcmp(command,"door1") == 0){
fixed = 0x200000000;
data = 0x01018280;
}else if(strcmp(command,"door2") == 0){
fixed = 0x200000000;
data = 0x01009280;
}else if(strcmp(command,"light") == 0){
fixed = 0x200000000;
data = 0x00009281;
}else{
ESP_LOGD(TAG,"ERROR: Invalid command");
return;
}
fixed = fixed | id;
encode_wireline(rollingCodeCounter, fixed, data, rollingCode);
printRollingCode();
if(strcmp(command,"door1") != 0){ // door2 is created with same counter and should always be called after door1
this->rollingCodeCounter = (this->rollingCodeCounter + 1) & 0xfffffff;
}
return;
}
void printRollingCode(){
for(int i = 0; i < CODE_LENGTH; i++){
if(this->rollingCode[i] <= 0x0f) ESP_LOGD(TAG, "0");
ESP_LOGD(TAG, "%x", this->rollingCode[i]);
}
}
} // namespace ratgdo
} // namespace esphome