esphome-ratgdo/components/ratgdo/ratgdo.cpp

714 lines
28 KiB
C++

/************************************
* Rage
* Against
* The
* Garage
* Door
* Opener
*
* Copyright (C) 2022 Paul Wieland
*
* GNU GENERAL PUBLIC LICENSE
************************************/
#include "ratgdo.h"
#include "ratgdo_state.h"
#include "esphome/core/log.h"
namespace esphome {
namespace ratgdo {
static const char* const TAG = "ratgdo";
static const int SYNC_DELAY = 1000;
//
// MAX_CODES_WITHOUT_FLASH_WRITE is a bit of a guess
// since we write the flash at most every every 5s
//
// We want the rolling counter to be high enough that the
// GDO will accept the command after an unexpected reboot
// that did not save the counter to flash in time which
// results in the rolling counter being behind what the GDO
// expects.
//
static const uint8_t MAX_CODES_WITHOUT_FLASH_WRITE = 10;
void RATGDOComponent::setup()
{
this->output_gdo_pin_->setup();
this->output_gdo_pin_->pin_mode(gpio::FLAG_OUTPUT);
this->input_gdo_pin_->setup();
this->input_gdo_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
if (this->input_obst_pin_ == nullptr || this->input_obst_pin_->get_pin() == 0) {
// Our base.yaml is always going to set this so we check for 0
// as well to avoid a breaking change.
this->obstruction_from_status_ = true;
} else {
this->input_obst_pin_->setup();
this->input_obst_pin_->pin_mode(gpio::FLAG_INPUT);
this->input_obst_pin_->attach_interrupt(RATGDOStore::isr_obstruction, &this->isr_store_, gpio::INTERRUPT_FALLING_EDGE);
}
this->sw_serial_.begin(9600, SWSERIAL_8N1, this->input_gdo_pin_->get_pin(), this->output_gdo_pin_->get_pin(), true);
ESP_LOGV(TAG, "Syncing rolling code counter after reboot...");
// many things happening at startup, use some delay for sync
set_timeout(SYNC_DELAY, [=] { this->sync(); });
}
void RATGDOComponent::loop()
{
if (this->transmit_pending_) {
if (!this->transmit_packet()) {
return;
}
}
if (!this->obstruction_from_status_) {
this->obstruction_loop();
}
this->gdo_state_loop();
}
void RATGDOComponent::dump_config()
{
ESP_LOGCONFIG(TAG, "Setting up RATGDO...");
LOG_PIN(" Output GDO Pin: ", this->output_gdo_pin_);
LOG_PIN(" Input GDO Pin: ", this->input_gdo_pin_);
if (this->obstruction_from_status_) {
ESP_LOGCONFIG(TAG, " Input Obstruction Pin: not used, will detect from GDO status");
} else {
LOG_PIN(" Input Obstruction Pin: ", this->input_obst_pin_);
}
ESP_LOGCONFIG(TAG, " Rolling Code Counter: %d", *this->rolling_code_counter);
ESP_LOGCONFIG(TAG, " Remote ID: %d", this->remote_id_);
}
uint16_t RATGDOComponent::decode_packet(const WirePacket& packet)
{
uint32_t rolling = 0;
uint64_t fixed = 0;
uint32_t data = 0;
decode_wireline(packet, &rolling, &fixed, &data);
uint16_t cmd = ((fixed >> 24) & 0xf00) | (data & 0xff);
data &= ~0xf000; // clear parity nibble
Command cmd_enum = to_Command(cmd, Command::UNKNOWN);
if ((fixed & 0xfffffff) == this->remote_id_) { // my commands
ESP_LOGV(TAG, "[%ld] received mine: rolling=%07" PRIx32 " fixed=%010" PRIx64 " data=%08" PRIx32, millis(), rolling, fixed, data);
return static_cast<uint16_t>(Command::UNKNOWN);
} else {
ESP_LOGV(TAG, "[%ld] received rolling=%07" PRIx32 " fixed=%010" PRIx64 " data=%08" PRIx32, millis(), rolling, fixed, data);
}
uint8_t nibble = (data >> 8) & 0xff;
uint8_t byte1 = (data >> 16) & 0xff;
uint8_t byte2 = (data >> 24) & 0xff;
ESP_LOGV(TAG, "cmd=%03x (%s) byte2=%02x byte1=%02x nibble=%01x", cmd, Command_to_string(cmd_enum), byte2, byte1, nibble);
if (cmd == Command::STATUS) {
auto door_state = to_DoorState(nibble, DoorState::UNKNOWN);
auto prev_door_state = *this->door_state;
// opening duration calibration
if (*this->opening_duration == 0) {
if (door_state == DoorState::OPENING && prev_door_state == DoorState::CLOSED) {
this->start_opening = millis();
}
if (door_state == DoorState::OPEN && prev_door_state == DoorState::OPENING && this->start_opening > 0) {
auto duration = (millis() - this->start_opening) / 1000;
this->set_opening_duration(round(duration * 10) / 10);
}
if (door_state == DoorState::STOPPED) {
this->start_opening = -1;
}
}
// closing duration calibration
if (*this->closing_duration == 0) {
if (door_state == DoorState::CLOSING && prev_door_state == DoorState::OPEN) {
this->start_closing = millis();
}
if (door_state == DoorState::CLOSED && prev_door_state == DoorState::CLOSING && this->start_closing > 0) {
auto duration = (millis() - this->start_closing) / 1000;
this->set_closing_duration(round(duration * 10) / 10);
}
if (door_state == DoorState::STOPPED) {
this->start_closing = -1;
}
}
if (door_state == DoorState::OPEN) {
this->door_position = 1.0;
} else if (door_state == DoorState::CLOSED) {
this->door_position = 0.0;
} else {
if (*this->closing_duration == 0 || *this->opening_duration == 0 || *this->door_position == DOOR_POSITION_UNKNOWN) {
this->door_position = 0.5; // best guess
}
}
if (door_state == DoorState::OPENING && !this->moving_to_position) {
this->position_sync_while_opening(1.0 - *this->door_position);
this->moving_to_position = true;
}
if (door_state == DoorState::CLOSING && !this->moving_to_position) {
this->position_sync_while_closing(*this->door_position);
this->moving_to_position = true;
}
if (door_state == DoorState::OPEN || door_state == DoorState::CLOSED || door_state == DoorState::STOPPED) {
this->cancel_position_sync_callbacks();
}
this->door_state = door_state;
this->light_state = static_cast<LightState>((byte2 >> 1) & 1); // safe because it can only be 0 or 1
this->lock_state = static_cast<LockState>(byte2 & 1); // safe because it can only be 0 or 1
this->motion_state = MotionState::CLEAR; // when the status message is read, reset motion state to 0|clear
this->motor_state = MotorState::OFF; // when the status message is read, reset motor state to 0|off
if (this->obstruction_from_status_) {
// ESP_LOGD(TAG, "Obstruction: reading from byte2, bit2, status=%d", ((byte2 >> 2) & 1) == 1);
this->obstruction_state = static_cast<ObstructionState>((byte1 >> 6) & 1);
// This isn't very fast to update, but its still better
// than nothing in the case the obstruction sensor is not
// wired up.
ESP_LOGD(TAG, "Obstruction: reading from GDO status byte1, bit6=%s", ObstructionState_to_string(*this->obstruction_state));
}
if (door_state == DoorState::CLOSED && door_state != prev_door_state) {
this->send_command(Command::GET_OPENINGS);
}
ESP_LOGD(TAG, "Status: door=%s light=%s lock=%s",
DoorState_to_string(*this->door_state),
LightState_to_string(*this->light_state),
LockState_to_string(*this->lock_state));
} else if (cmd == Command::LIGHT) {
if (nibble == 0) {
this->light_state = LightState::OFF;
} else if (nibble == 1) {
this->light_state = LightState::ON;
} else if (nibble == 2) { // toggle
this->light_state = light_state_toggle(*this->light_state);
}
ESP_LOGD(TAG, "Light: action=%s state=%s",
nibble == 0 ? "OFF" : nibble == 1 ? "ON"
: "TOGGLE",
LightState_to_string(*this->light_state));
} else if (cmd == Command::MOTOR_ON) {
this->motor_state = MotorState::ON;
ESP_LOGD(TAG, "Motor: state=%s", MotorState_to_string(*this->motor_state));
} else if (cmd == Command::OPEN) {
this->button_state = (byte1 & 1) == 1 ? ButtonState::PRESSED : ButtonState::RELEASED;
ESP_LOGD(TAG, "Open: button=%s", ButtonState_to_string(*this->button_state));
} else if (cmd == Command::OPENINGS) {
// nibble==0 if it's our request
// update openings only from our request or if it's not unknown state
if (nibble == 0 || *this->openings != 0) {
this->openings = (byte1 << 8) | byte2;
ESP_LOGD(TAG, "Openings: %d", *this->openings);
} else {
ESP_LOGD(TAG, "Ignoreing openings, not from our request");
}
} else if (cmd == Command::MOTION) {
this->motion_state = MotionState::DETECTED;
if (*this->light_state == LightState::OFF) {
this->send_command(Command::GET_STATUS);
}
ESP_LOGD(TAG, "Motion: %s", MotionState_to_string(*this->motion_state));
} else if (cmd == Command::SET_TTC) {
auto seconds = (byte1 << 8) | byte2;
ESP_LOGD(TAG, "Time to close (TTC): %ds", seconds);
}
return cmd;
}
void RATGDOComponent::encode_packet(Command command, uint32_t data, bool increment, WirePacket& packet)
{
auto cmd = static_cast<uint64_t>(command);
uint64_t fixed = ((cmd & ~0xff) << 24) | this->remote_id_;
uint32_t send_data = (data << 8) | (cmd & 0xff);
ESP_LOGV(TAG, "[%ld] Encode for transmit rolling=%07" PRIx32 " fixed=%010" PRIx64 " data=%08" PRIx32, millis(), *this->rolling_code_counter, fixed, send_data);
encode_wireline(*this->rolling_code_counter, fixed, send_data, packet);
this->print_packet(packet);
if (increment) {
this->increment_rolling_code_counter();
}
}
void RATGDOComponent::set_opening_duration(float duration)
{
ESP_LOGD(TAG, "Set opening duration: %.1fs", duration);
this->opening_duration = duration;
}
void RATGDOComponent::set_closing_duration(float duration)
{
ESP_LOGD(TAG, "Set closing duration: %.1fs", duration);
this->closing_duration = duration;
}
void RATGDOComponent::set_rolling_code_counter(uint32_t counter)
{
ESP_LOGV(TAG, "Set rolling code counter to %d", counter);
this->rolling_code_counter = counter;
}
void RATGDOComponent::increment_rolling_code_counter(int delta)
{
this->rolling_code_counter = (*this->rolling_code_counter + delta) & 0xfffffff;
}
void RATGDOComponent::print_packet(const WirePacket& packet) const
{
ESP_LOGV(TAG, "Counter: %d Send code: [%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X]",
*this->rolling_code_counter,
packet[0],
packet[1],
packet[2],
packet[3],
packet[4],
packet[5],
packet[6],
packet[7],
packet[8],
packet[9],
packet[10],
packet[11],
packet[12],
packet[13],
packet[14],
packet[15],
packet[16],
packet[17],
packet[18]);
}
/*************************** OBSTRUCTION DETECTION ***************************/
void RATGDOComponent::obstruction_loop()
{
long current_millis = millis();
static unsigned long last_millis = 0;
static unsigned long last_asleep = 0;
// the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), obstructed (HIGH), asleep (LOW)
// the transitions between awake and asleep are tricky because the voltage drops slowly when falling asleep
// and is high without pulses when waking up
// If at least 3 low pulses are counted within 50ms, the door is awake, not obstructed and we don't have to check anything else
const long CHECK_PERIOD = 50;
const long PULSES_LOWER_LIMIT = 3;
if (current_millis - last_millis > CHECK_PERIOD) {
// ESP_LOGD(TAG, "%ld: Obstruction count: %d, expected: %d, since asleep: %ld",
// current_millis, this->isr_store_.obstruction_low_count, PULSES_EXPECTED,
// current_millis - last_asleep
// );
// check to see if we got more then PULSES_LOWER_LIMIT pulses
if (this->isr_store_.obstruction_low_count > PULSES_LOWER_LIMIT) {
this->obstruction_state = ObstructionState::CLEAR;
} else if (this->isr_store_.obstruction_low_count == 0) {
// if there have been no pulses the line is steady high or low
if (!this->input_obst_pin_->digital_read()) {
// asleep
last_asleep = current_millis;
} else {
// if the line is high and was last asleep more than 700ms ago, then there is an obstruction present
if (current_millis - last_asleep > 700) {
this->obstruction_state = ObstructionState::OBSTRUCTED;
}
}
}
last_millis = current_millis;
this->isr_store_.obstruction_low_count = 0;
}
}
void RATGDOComponent::gdo_state_loop()
{
static bool reading_msg = false;
static uint32_t msg_start = 0;
static uint16_t byte_count = 0;
static WirePacket rx_packet;
if (!reading_msg) {
while (this->sw_serial_.available()) {
uint8_t ser_byte = this->sw_serial_.read();
if (ser_byte != 0x55 && ser_byte != 0x01 && ser_byte != 0x00) {
byte_count = 0;
continue;
}
msg_start = ((msg_start << 8) | ser_byte) & 0xffffff;
byte_count++;
// if we are at the start of a message, capture the next 16 bytes
if (msg_start == 0x550100) {
rx_packet[0] = 0x55;
rx_packet[1] = 0x01;
rx_packet[2] = 0x00;
reading_msg = true;
break;
}
}
}
if (reading_msg) {
while (this->sw_serial_.available()) {
uint8_t ser_byte = this->sw_serial_.read();
rx_packet[byte_count] = ser_byte;
byte_count++;
if (byte_count == PACKET_LENGTH) {
reading_msg = false;
byte_count = 0;
this->decode_packet(rx_packet);
return;
}
}
}
}
void RATGDOComponent::query_status()
{
send_command(Command::GET_STATUS);
}
void RATGDOComponent::query_openings()
{
send_command(Command::GET_OPENINGS);
}
/************************* DOOR COMMUNICATION *************************/
/*
* Transmit a message to the door opener over uart1
* The TX1 pin is controlling a transistor, so the logic is inverted
* A HIGH state on TX1 will pull the 12v line LOW
*
* The opener requires a specific duration low/high pulse before it will accept
* a message
*/
void RATGDOComponent::send_command(Command command, uint32_t data, bool increment)
{
if (!this->transmit_pending_) { // have an untransmitted packet
this->encode_packet(command, data, increment, this->tx_packet_);
} else {
// unlikely this would happed, we're ensuring any pending packet
// is transmitted each loop before doing anyting else
ESP_LOGW(TAG, "Have untransmitted packet, ignoring command: %s", Command_to_string(command));
}
this->transmit_packet();
}
bool RATGDOComponent::transmit_packet()
{
auto now = micros();
while (micros() - now < 1300) {
if (this->input_gdo_pin_->digital_read()) {
ESP_LOGD(TAG, "Collision detected, waiting to send packet");
this->transmit_pending_ = true;
return false;
}
delayMicroseconds(200);
}
this->output_gdo_pin_->digital_write(true); // pull the line high for 1305 micros so the
// door opener responds to the message
delayMicroseconds(1305);
this->output_gdo_pin_->digital_write(false); // bring the line low
delayMicroseconds(1260); // "LOW" pulse duration before the message start
this->sw_serial_.write(this->tx_packet_, PACKET_LENGTH);
this->transmit_pending_ = false;
return true;
}
void RATGDOComponent::sync()
{
// increment rolling code counter by some amount in case we crashed without writing to flash the latest value
this->increment_rolling_code_counter(MAX_CODES_WITHOUT_FLASH_WRITE);
set_retry(
500, 10, [=](uint8_t r) {
if (*this->door_state != DoorState::UNKNOWN) { // have status
if (*this->openings != 0) { // have openings
return RetryResult::DONE;
} else {
if (r == 0) { // failed to sync probably rolling counter is wrong, notify
ESP_LOGD(TAG, "Triggering sync failed actions.");
this->sync_failed = true;
};
this->send_command(Command::GET_OPENINGS);
return RetryResult::RETRY;
}
} else {
if (r == 0) { // failed to sync probably rolling counter is wrong, notify
ESP_LOGD(TAG, "Triggering sync failed actions.");
this->sync_failed = true;
};
this->send_command(Command::GET_STATUS);
return RetryResult::RETRY;
}
},
1.5f);
}
void RATGDOComponent::open_door()
{
if (*this->door_state == DoorState::OPENING) {
return; // gets ignored by opener
}
this->cancel_position_sync_callbacks();
this->door_command(data::DOOR_OPEN);
}
void RATGDOComponent::close_door()
{
if (*this->door_state == DoorState::CLOSING || *this->door_state == DoorState::OPENING) {
return; // gets ignored by opener
}
this->cancel_position_sync_callbacks();
this->door_command(data::DOOR_CLOSE);
}
void RATGDOComponent::stop_door()
{
if (*this->door_state != DoorState::OPENING && *this->door_state != DoorState::CLOSING) {
ESP_LOGW(TAG, "The door is not moving.");
return;
}
this->door_command(data::DOOR_STOP);
}
void RATGDOComponent::toggle_door()
{
if (*this->door_state == DoorState::OPENING) {
return; // gets ignored by opener
}
this->cancel_position_sync_callbacks();
this->door_command(data::DOOR_TOGGLE);
}
void RATGDOComponent::position_sync_while_opening(float delta, float update_period)
{
if (*this->opening_duration == 0) {
ESP_LOGW(TAG, "I don't know opening duration, ignoring position sync");
return;
}
auto updates = *this->opening_duration * 1000 * delta / update_period;
auto position_update = delta / updates;
auto count = int(updates);
ESP_LOGV(TAG, "[Opening] Position sync %d times: ", count);
// try to keep position in sync while door is moving
set_retry("position_sync_while_moving", update_period, count, [=](uint8_t r) {
ESP_LOGV(TAG, "[Opening] Position sync: %d: ", r);
this->door_position = *this->door_position + position_update;
return RetryResult::RETRY;
});
// this would only get called if no status message is received after door stops moving
// request a status message in that case, will get cancelled if a status message is received before
set_timeout("door_status_update", (*this->opening_duration + 1) * 1000, [=]() {
this->send_command(Command::GET_STATUS);
});
}
void RATGDOComponent::position_sync_while_closing(float delta, float update_period)
{
if (*this->closing_duration == 0) {
ESP_LOGW(TAG, "I don't know closing duration, ignoring position sync");
return;
}
auto updates = *this->closing_duration * 1000 * delta / update_period;
auto position_update = delta / updates;
auto count = int(updates);
ESP_LOGV(TAG, "[Closing] Position sync %d times: ", count);
// try to keep position in sync while door is moving
set_retry("position_sync_while_moving", update_period, count, [=](uint8_t r) {
ESP_LOGV(TAG, "[Closing] Position sync: %d: ", r);
this->door_position = *this->door_position - position_update;
return RetryResult::RETRY;
});
// this would only get called if no status message is received after door stops moving
// request a status message in that case
set_timeout("door_status_update", (*this->closing_duration + 1) * 1000, [=]() {
this->send_command(Command::GET_STATUS);
});
}
void RATGDOComponent::door_move_to_position(float position)
{
if (*this->door_state == DoorState::OPENING || *this->door_state == DoorState::CLOSING) {
ESP_LOGW(TAG, "The door is moving, ignoring.");
return;
}
auto delta = position - *this->door_position;
if (delta == 0) {
ESP_LOGD(TAG, "Door is already at position %.2f", position);
return;
}
auto duration = delta > 0 ? *this->opening_duration : *this->closing_duration;
if (duration == 0) {
ESP_LOGW(TAG, "I don't know duration, ignoring move to position");
return;
}
if (delta > 0) { // open
this->door_command(data::DOOR_OPEN);
this->position_sync_while_opening(delta);
} else { // close
delta = -delta;
this->door_command(data::DOOR_CLOSE);
this->position_sync_while_closing(delta);
}
auto operation_time = duration * 1000 * delta;
ESP_LOGD(TAG, "Moving to position %.2f in %.1fs", position, operation_time / 1000.0);
this->moving_to_position = true;
set_timeout("move_to_position", operation_time, [=] {
this->door_command(data::DOOR_STOP);
this->moving_to_position = false;
this->door_position = position;
});
}
void RATGDOComponent::cancel_position_sync_callbacks()
{
if (this->moving_to_position) {
ESP_LOGD(TAG, "Cancelling position callbacks");
cancel_timeout("move_to_position");
cancel_retry("position_sync_while_moving");
cancel_timeout("door_status_update");
}
moving_to_position = false;
}
void RATGDOComponent::door_command(uint32_t data)
{
data |= (1 << 16); // button 1 ?
data |= (1 << 8); // button press
this->send_command(Command::OPEN, data, false);
set_timeout(100, [=] {
auto data2 = data & ~(1 << 8); // button release
this->send_command(Command::OPEN, data2);
});
}
void RATGDOComponent::light_on()
{
this->light_state = LightState::ON;
this->send_command(Command::LIGHT, data::LIGHT_ON);
}
void RATGDOComponent::light_off()
{
this->light_state = LightState::OFF;
this->send_command(Command::LIGHT, data::LIGHT_OFF);
}
void RATGDOComponent::toggle_light()
{
this->light_state = light_state_toggle(*this->light_state);
this->send_command(Command::LIGHT, data::LIGHT_TOGGLE);
}
// Lock functions
void RATGDOComponent::lock()
{
this->lock_state = LockState::LOCKED;
this->send_command(Command::LOCK, data::LOCK_ON);
}
void RATGDOComponent::unlock()
{
this->lock_state = LockState::UNLOCKED;
this->send_command(Command::LOCK, data::LOCK_OFF);
}
void RATGDOComponent::toggle_lock()
{
this->lock_state = lock_state_toggle(*this->lock_state);
this->send_command(Command::LOCK, data::LOCK_TOGGLE);
}
LightState RATGDOComponent::get_light_state() const
{
return *this->light_state;
}
void RATGDOComponent::subscribe_rolling_code_counter(std::function<void(uint32_t)>&& f)
{
// change update to children is defered until after component loop
// if multiple changes occur during component loop, only the last one is notified
this->rolling_code_counter.subscribe([=](uint32_t state) { defer("rolling_code_counter", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_opening_duration(std::function<void(float)>&& f)
{
this->opening_duration.subscribe([=](float state) { defer("opening_duration", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_closing_duration(std::function<void(float)>&& f)
{
this->closing_duration.subscribe([=](float state) { defer("closing_duration", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_openings(std::function<void(uint16_t)>&& f)
{
this->openings.subscribe([=](uint16_t state) { defer("openings", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_door_state(std::function<void(DoorState, float)>&& f)
{
this->door_state.subscribe([=](DoorState state) {
defer("door_state", [=] { f(state, *this->door_position); });
});
this->door_position.subscribe([=](float position) {
defer("door_state", [=] { f(*this->door_state, position); });
});
}
void RATGDOComponent::subscribe_light_state(std::function<void(LightState)>&& f)
{
this->light_state.subscribe([=](LightState state) { defer("light_state", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_lock_state(std::function<void(LockState)>&& f)
{
this->lock_state.subscribe([=](LockState state) { defer("lock_state", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_obstruction_state(std::function<void(ObstructionState)>&& f)
{
this->obstruction_state.subscribe([=](ObstructionState state) { defer("obstruction_state", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_motor_state(std::function<void(MotorState)>&& f)
{
this->motor_state.subscribe([=](MotorState state) { defer("motor_state", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_button_state(std::function<void(ButtonState)>&& f)
{
this->button_state.subscribe([=](ButtonState state) { defer("button_state", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_motion_state(std::function<void(MotionState)>&& f)
{
this->motion_state.subscribe([=](MotionState state) { defer("motion_state", [=] { f(state); }); });
}
void RATGDOComponent::subscribe_sync_failed(std::function<void(bool)>&& f)
{
this->sync_failed.subscribe(std::move(f));
}
} // namespace ratgdo
} // namespace esphome