Version 0.1.8 from FTP

git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@295 65c4cc65-6c06-0410-ace0-fbb531ad65f3
This commit is contained in:
Mark Spencer
2001-04-24 02:02:21 +00:00
parent ad0aa8091a
commit 3a0a095d15
7 changed files with 205 additions and 68 deletions

View File

@@ -13,7 +13,12 @@
#include "gsm.h"
#include "proto.h"
#ifdef K6OPT
#include "k6opt.h"
#define Short_term_analysis_filtering Short_term_analysis_filteringx
#endif
/*
* SHORT TERM ANALYSIS FILTERING SECTION
*/
@@ -180,9 +185,16 @@ static void LARp_to_rp P1((LARp),
/* 4.2.10 */
static void Short_term_analysis_filtering P4((S,rp,k_n,s),
struct gsm_state * S,
register word * rp, /* [0..7] IN */
#ifndef Short_term_analysis_filtering
/* SJB Remark:
* I tried 2 MMX versions of this function, neither is significantly
* faster than the C version which follows. MMX might be useful if
* one were processing 2 input streams in parallel.
*/
static void Short_term_analysis_filtering P4((u0,rp0,k_n,s),
register word * u0,
register word * rp0, /* [0..7] IN */
register int k_n, /* k_end - k_start */
register word * s /* [0..n-1] IN/OUT */
)
@@ -194,45 +206,45 @@ static void Short_term_analysis_filtering P4((S,rp,k_n,s),
* coefficient), it is assumed that the computation begins with index
* k_start (for arrays d[..] and s[..]) and stops with index k_end
* (k_start and k_end are defined in 4.2.9.1). This procedure also
* needs to keep the array u[0..7] in memory for each call.
* needs to keep the array u0[0..7] in memory for each call.
*/
{
register word * u = S->u;
register int i;
register word di, zzz, ui, sav, rpi;
register longword ltmp;
register word * u_top = u0 + 8;
register word * s_top = s + k_n;
for (; k_n--; s++) {
di = sav = *s;
for (i = 0; i < 8; i++) { /* YYY */
ui = u[i];
rpi = rp[i];
u[i] = sav;
zzz = GSM_MULT_R(rpi, di);
sav = GSM_ADD( ui, zzz);
zzz = GSM_MULT_R(rpi, ui);
di = GSM_ADD( di, zzz );
while (s < s_top) {
register word *u, *rp ;
register longword di, u_out;
di = u_out = *s;
for (rp=rp0, u=u0; u<u_top;) {
register longword ui, rpi;
ui = *u;
*u++ = u_out;
rpi = *rp++;
u_out = ui + (((rpi*di)+0x4000)>>15);
di = di + (((rpi*ui)+0x4000)>>15);
/* make the common case fastest: */
if ((u_out == (word)u_out) && (di == (word)di)) continue;
/* otherwise do slower fixup (saturation) */
if (u_out>MAX_WORD) u_out=MAX_WORD;
else if (u_out<MIN_WORD) u_out=MIN_WORD;
if (di>MAX_WORD) di=MAX_WORD;
else if (di<MIN_WORD) di=MIN_WORD;
}
*s = di;
*s++ = di;
}
}
#endif
#if defined(USE_FLOAT_MUL) && defined(FAST)
static void Fast_Short_term_analysis_filtering P4((S,rp,k_n,s),
struct gsm_state * S,
static void Fast_Short_term_analysis_filtering P4((u,rp,k_n,s),
register word * u;
register word * rp, /* [0..7] IN */
register int k_n, /* k_end - k_start */
register word * s /* [0..n-1] IN/OUT */
)
{
register word * u = S->u;
register int i;
float uf[8],
@@ -262,6 +274,15 @@ static void Fast_Short_term_analysis_filtering P4((S,rp,k_n,s),
}
#endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */
/*
* SJB Remark: modified Short_term_synthesis_filtering() below
* for significant (abt 35%) speedup of decompression.
* (gcc-2.95, k6 cpu)
* Please don't change this without benchmarking decompression
* to see that you haven't harmed speed.
* This function burns most of CPU time for untoasting.
* Unfortunately, didn't see any good way to benefit from mmx.
*/
static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
struct gsm_state * S,
register word * rrp, /* [0..7] IN */
@@ -272,32 +293,34 @@ static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
{
register word * v = S->v;
register int i;
register word sri, tmp1, tmp2;
register longword ltmp; /* for GSM_ADD & GSM_SUB */
register longword sri;
while (k--) {
sri = *wt++;
for (i = 8; i--;) {
register longword tmp1, tmp2;
/* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );
*/
tmp1 = rrp[i];
tmp2 = v[i];
tmp2 = ( tmp1 == MIN_WORD && tmp2 == MIN_WORD
? MAX_WORD
: 0x0FFFF & (( (longword)tmp1 * (longword)tmp2
+ 16384) >> 15)) ;
sri = GSM_SUB( sri, tmp2 );
tmp2 = (( tmp1 * tmp2 + 16384) >> 15) ;
/* saturation done below */
sri -= tmp2;
if (sri != (word)sri) {
sri = (sri<0)? MIN_WORD:MAX_WORD;
}
/* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );
*/
tmp1 = ( tmp1 == MIN_WORD && sri == MIN_WORD
? MAX_WORD
: 0x0FFFF & (( (longword)tmp1 * (longword)sri
+ 16384) >> 15)) ;
v[i+1] = GSM_ADD( v[i], tmp1);
tmp1 = (( tmp1 * sri + 16384) >> 15) ;
/* saturation done below */
tmp1 += v[i];
if (tmp1 != (word)tmp1) {
tmp1 = (tmp1<0)? MIN_WORD:MAX_WORD;
}
v[i+1] = tmp1;
}
*sr++ = v[0] = sri;
}
@@ -355,7 +378,7 @@ void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s),
word * LARpp_j_1 = S->LARpp[ S->j ^= 1 ];
word LARp[8];
int i;
#undef FILTER
#if defined(FAST) && defined(USE_FLOAT_MUL)
# define FILTER (* (S->fast \
@@ -370,19 +393,20 @@ void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s),
Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
LARp_to_rp( LARp );
FILTER( S, LARp, 13, s);
FILTER( S->u, LARp, 13, s);
Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
LARp_to_rp( LARp );
FILTER( S, LARp, 14, s + 13);
FILTER( S->u, LARp, 14, s + 13);
Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
LARp_to_rp( LARp );
FILTER( S, LARp, 13, s + 27);
FILTER( S->u, LARp, 13, s + 27);
Coefficients_40_159( LARpp_j, LARp);
LARp_to_rp( LARp );
FILTER( S, LARp, 120, s + 40);
FILTER( S->u, LARp, 120, s + 40);
}
void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s),