mirror of
https://github.com/asterisk/asterisk.git
synced 2025-11-01 19:43:03 +00:00
ADPCM and G.726 performance improvements courtesy fOSSiL (bug #2843)
git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@4249 65c4cc65-6c06-0410-ace0-fbb531ad65f3
This commit is contained in:
@@ -25,6 +25,22 @@
|
||||
#include <string.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#define WANT_ASM
|
||||
#include "log2comp.h"
|
||||
|
||||
/* define NOT_BLI to use a faster but not bit-level identical version */
|
||||
/* #define NOT_BLI */
|
||||
|
||||
#if defined(NOT_BLI)
|
||||
# if defined(_MSC_VER)
|
||||
typedef __int64 sint64;
|
||||
# elif defined(__GNUC__)
|
||||
typedef long long sint64;
|
||||
# else
|
||||
# error 64-bit integer type is not defined for your compiler/platform
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#define BUFFER_SIZE 8096 /* size for the translation buffers */
|
||||
#define BUF_SHIFT 5
|
||||
|
||||
@@ -49,96 +65,52 @@ static char *tdesc = "ITU G.726-32kbps G726 Transcoder";
|
||||
*/
|
||||
struct g726_state {
|
||||
long yl; /* Locked or steady state step size multiplier. */
|
||||
short yu; /* Unlocked or non-steady state step size multiplier. */
|
||||
short dms; /* Short term energy estimate. */
|
||||
short dml; /* Long term energy estimate. */
|
||||
short ap; /* Linear weighting coefficient of 'yl' and 'yu'. */
|
||||
int yu; /* Unlocked or non-steady state step size multiplier. */
|
||||
int dms; /* Short term energy estimate. */
|
||||
int dml; /* Long term energy estimate. */
|
||||
int ap; /* Linear weighting coefficient of 'yl' and 'yu'. */
|
||||
|
||||
short a[2]; /* Coefficients of pole portion of prediction filter. */
|
||||
short b[6]; /* Coefficients of zero portion of prediction filter. */
|
||||
short pk[2]; /*
|
||||
* Signs of previous two samples of a partially
|
||||
int a[2]; /* Coefficients of pole portion of prediction filter.
|
||||
* stored as fixed-point 1==2^14 */
|
||||
int b[6]; /* Coefficients of zero portion of prediction filter.
|
||||
* stored as fixed-point 1==2^14 */
|
||||
int pk[2]; /* Signs of previous two samples of a partially
|
||||
* reconstructed signal.
|
||||
*/
|
||||
short dq[6]; /*
|
||||
* Previous 6 samples of the quantized difference
|
||||
* signal represented in an internal floating point
|
||||
* format.
|
||||
*/
|
||||
short sr[2]; /*
|
||||
* Previous 2 samples of the quantized difference
|
||||
* signal represented in an internal floating point
|
||||
* format.
|
||||
*/
|
||||
char td; /* delayed tone detect, new in 1988 version */
|
||||
int dq[6]; /* Previous 6 samples of the quantized difference signal
|
||||
* stored as fixed point 1==2^12,
|
||||
* or in internal floating point format */
|
||||
int sr[2]; /* Previous 2 samples of the quantized difference signal
|
||||
* stored as fixed point 1==2^12,
|
||||
* or in internal floating point format */
|
||||
int td; /* delayed tone detect, new in 1988 version */
|
||||
};
|
||||
|
||||
|
||||
|
||||
static short qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400};
|
||||
static int qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400};
|
||||
/*
|
||||
* Maps G.721 code word to reconstructed scale factor normalized log
|
||||
* magnitude values.
|
||||
*/
|
||||
static short _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
|
||||
static int _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
|
||||
425, 373, 323, 273, 213, 135, 4, -2048};
|
||||
|
||||
/* Maps G.721 code word to log of scale factor multiplier. */
|
||||
static short _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
|
||||
static int _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
|
||||
1122, 355, 198, 112, 64, 41, 18, -12};
|
||||
/*
|
||||
* Maps G.721 code words to a set of values whose long and short
|
||||
* term averages are computed and then compared to give an indication
|
||||
* how stationary (steady state) the signal is.
|
||||
*/
|
||||
static short _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
|
||||
static int _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
|
||||
0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
|
||||
|
||||
static short power2[15] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
|
||||
/* Deprecated
|
||||
static int power2[15] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
|
||||
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000};
|
||||
|
||||
/*
|
||||
* quan()
|
||||
*
|
||||
* quantizes the input val against the table of size short integers.
|
||||
* It returns i if table[i - 1] <= val < table[i].
|
||||
*
|
||||
* Using linear search for simple coding.
|
||||
*/
|
||||
static int quan(int val, short *table, int size)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < size; i++)
|
||||
if (val < *table++)
|
||||
break;
|
||||
return (i);
|
||||
}
|
||||
|
||||
/*
|
||||
* fmult()
|
||||
*
|
||||
* returns the integer product of the 14-bit integer "an" and
|
||||
* "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
|
||||
*/
|
||||
static int fmult(int an, int srn)
|
||||
{
|
||||
short anmag, anexp, anmant;
|
||||
short wanexp, wanmant;
|
||||
short retval;
|
||||
|
||||
anmag = (an > 0) ? an : ((-an) & 0x1FFF);
|
||||
anexp = quan(anmag, power2, 15) - 6;
|
||||
anmant = (anmag == 0) ? 32 :
|
||||
(anexp >= 0) ? anmag >> anexp : anmag << -anexp;
|
||||
wanexp = anexp + ((srn >> 6) & 0xF) - 13;
|
||||
|
||||
wanmant = (anmant * (srn & 077) + 0x30) >> 4;
|
||||
retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
|
||||
(wanmant >> -wanexp);
|
||||
|
||||
return (((an ^ srn) < 0) ? -retval : retval);
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
* g72x_init_state()
|
||||
@@ -156,18 +128,47 @@ static void g726_init_state(struct g726_state *state_ptr)
|
||||
state_ptr->dms = 0;
|
||||
state_ptr->dml = 0;
|
||||
state_ptr->ap = 0;
|
||||
for (cnta = 0; cnta < 2; cnta++) {
|
||||
for (cnta = 0; cnta < 2; cnta++)
|
||||
{
|
||||
state_ptr->a[cnta] = 0;
|
||||
state_ptr->pk[cnta] = 0;
|
||||
#ifdef NOT_BLI
|
||||
state_ptr->sr[cnta] = 1;
|
||||
#else
|
||||
state_ptr->sr[cnta] = 32;
|
||||
#endif
|
||||
}
|
||||
for (cnta = 0; cnta < 6; cnta++) {
|
||||
for (cnta = 0; cnta < 6; cnta++)
|
||||
{
|
||||
state_ptr->b[cnta] = 0;
|
||||
#ifdef NOT_BLI
|
||||
state_ptr->dq[cnta] = 1;
|
||||
#else
|
||||
state_ptr->dq[cnta] = 32;
|
||||
#endif
|
||||
}
|
||||
state_ptr->td = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* quan()
|
||||
*
|
||||
* quantizes the input val against the table of integers.
|
||||
* It returns i if table[i - 1] <= val < table[i].
|
||||
*
|
||||
* Using linear search for simple coding.
|
||||
*/
|
||||
static int quan(int val, int *table, int size)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < size && val >= *table; ++i, ++table)
|
||||
;
|
||||
return (i);
|
||||
}
|
||||
|
||||
#ifdef NOT_BLI /* faster non-identical version */
|
||||
|
||||
/*
|
||||
* predictor_zero()
|
||||
*
|
||||
@@ -175,27 +176,69 @@ static void g726_init_state(struct g726_state *state_ptr)
|
||||
*
|
||||
*/
|
||||
static int predictor_zero(struct g726_state *state_ptr)
|
||||
{
|
||||
int i;
|
||||
int sezi;
|
||||
|
||||
sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
|
||||
for (i = 1; i < 6; i++) /* ACCUM */
|
||||
sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
|
||||
return (sezi);
|
||||
{ /* divide by 2 is necessary here to handle negative numbers correctly */
|
||||
int i;
|
||||
sint64 sezi;
|
||||
for (sezi = 0, i = 0; i < 6; i++) /* ACCUM */
|
||||
sezi += (sint64)state_ptr->b[i] * state_ptr->dq[i];
|
||||
return (int)(sezi >> 13) / 2 /* 2^14 */;
|
||||
}
|
||||
|
||||
/*
|
||||
* predictor_pole()
|
||||
*
|
||||
* computes the estimated signal from 2-pole predictor.
|
||||
*
|
||||
*/
|
||||
static int predictor_pole(struct g726_state *state_ptr)
|
||||
{ /* divide by 2 is necessary here to handle negative numbers correctly */
|
||||
return (int)(((sint64)state_ptr->a[1] * state_ptr->sr[1] +
|
||||
(sint64)state_ptr->a[0] * state_ptr->sr[0]) >> 13) / 2 /* 2^14 */;
|
||||
}
|
||||
|
||||
#else /* NOT_BLI - identical version */
|
||||
/*
|
||||
* fmult()
|
||||
*
|
||||
* returns the integer product of the fixed-point number "an" (1==2^12) and
|
||||
* "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
|
||||
*/
|
||||
static int fmult(int an, int srn)
|
||||
{
|
||||
int anmag, anexp, anmant;
|
||||
int wanexp, wanmant;
|
||||
int retval;
|
||||
|
||||
anmag = (an > 0) ? an : ((-an) & 0x1FFF);
|
||||
anexp = log2(anmag) - 5;
|
||||
anmant = (anmag == 0) ? 32 :
|
||||
(anexp >= 0) ? anmag >> anexp : anmag << -anexp;
|
||||
wanexp = anexp + ((srn >> 6) & 0xF) - 13;
|
||||
|
||||
wanmant = (anmant * (srn & 077) + 0x30) >> 4;
|
||||
retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
|
||||
(wanmant >> -wanexp);
|
||||
|
||||
return (((an ^ srn) < 0) ? -retval : retval);
|
||||
}
|
||||
|
||||
static int predictor_zero(struct g726_state *state_ptr)
|
||||
{
|
||||
int i;
|
||||
int sezi;
|
||||
for (sezi = 0, i = 0; i < 6; i++) /* ACCUM */
|
||||
sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
|
||||
return sezi;
|
||||
}
|
||||
|
||||
static int predictor_pole(struct g726_state *state_ptr)
|
||||
{
|
||||
return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
|
||||
fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
|
||||
fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
|
||||
}
|
||||
|
||||
#endif /* NOT_BLI */
|
||||
|
||||
/*
|
||||
* step_size()
|
||||
*
|
||||
@@ -234,14 +277,14 @@ static int step_size(struct g726_state *state_ptr)
|
||||
static int quantize(
|
||||
int d, /* Raw difference signal sample */
|
||||
int y, /* Step size multiplier */
|
||||
short *table, /* quantization table */
|
||||
int size) /* table size of short integers */
|
||||
int *table, /* quantization table */
|
||||
int size) /* table size of integers */
|
||||
{
|
||||
short dqm; /* Magnitude of 'd' */
|
||||
short exp; /* Integer part of base 2 log of 'd' */
|
||||
short mant; /* Fractional part of base 2 log */
|
||||
short dl; /* Log of magnitude of 'd' */
|
||||
short dln; /* Step size scale factor normalized log */
|
||||
int dqm; /* Magnitude of 'd' */
|
||||
int exp; /* Integer part of base 2 log of 'd' */
|
||||
int mant; /* Fractional part of base 2 log */
|
||||
int dl; /* Log of magnitude of 'd' */
|
||||
int dln; /* Step size scale factor normalized log */
|
||||
int i;
|
||||
|
||||
/*
|
||||
@@ -250,9 +293,11 @@ static int quantize(
|
||||
* Compute base 2 log of 'd', and store in 'dl'.
|
||||
*/
|
||||
dqm = abs(d);
|
||||
exp = quan(dqm >> 1, power2, 15);
|
||||
exp = log2(dqm);
|
||||
if (exp < 0)
|
||||
exp = 0;
|
||||
mant = ((dqm << 7) >> exp) & 0x7F; /* Fractional portion. */
|
||||
dl = (exp << 7) + mant;
|
||||
dl = (exp << 7) | mant;
|
||||
|
||||
/*
|
||||
* SUBTB
|
||||
@@ -287,20 +332,29 @@ static int reconstruct(
|
||||
int dqln, /* G.72x codeword */
|
||||
int y) /* Step size multiplier */
|
||||
{
|
||||
short dql; /* Log of 'dq' magnitude */
|
||||
short dex; /* Integer part of log */
|
||||
short dqt;
|
||||
short dq; /* Reconstructed difference signal sample */
|
||||
int dql; /* Log of 'dq' magnitude */
|
||||
int dex; /* Integer part of log */
|
||||
int dqt;
|
||||
int dq; /* Reconstructed difference signal sample */
|
||||
|
||||
dql = dqln + (y >> 2); /* ADDA */
|
||||
|
||||
if (dql < 0) {
|
||||
return ((sign) ? -0x8000 : 0);
|
||||
#ifdef NOT_BLI
|
||||
return (sign) ? -1 : 1;
|
||||
#else
|
||||
return (sign) ? -0x8000 : 0;
|
||||
#endif
|
||||
} else { /* ANTILOG */
|
||||
dex = (dql >> 7) & 15;
|
||||
dqt = 128 + (dql & 127);
|
||||
#ifdef NOT_BLI
|
||||
dq = ((dqt << 19) >> (14 - dex));
|
||||
return (sign) ? -dq : dq;
|
||||
#else
|
||||
dq = (dqt << 7) >> (14 - dex);
|
||||
return ((sign) ? (dq - 0x8000) : dq);
|
||||
return (sign) ? (dq - 0x8000) : dq;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
@@ -320,19 +374,26 @@ static void update(
|
||||
struct g726_state *state_ptr) /* coder state pointer */
|
||||
{
|
||||
int cnt;
|
||||
short mag, exp; /* Adaptive predictor, FLOAT A */
|
||||
short a2p=0; /* LIMC */
|
||||
short a1ul; /* UPA1 */
|
||||
short pks1; /* UPA2 */
|
||||
short fa1;
|
||||
char tr; /* tone/transition detector */
|
||||
short ylint, thr2, dqthr;
|
||||
short ylfrac, thr1;
|
||||
short pk0;
|
||||
int mag; /* Adaptive predictor, FLOAT A */
|
||||
#ifndef NOT_BLI
|
||||
int exp;
|
||||
#endif
|
||||
int a2p=0; /* LIMC */
|
||||
int a1ul; /* UPA1 */
|
||||
int pks1; /* UPA2 */
|
||||
int fa1;
|
||||
int tr; /* tone/transition detector */
|
||||
int ylint, thr2, dqthr;
|
||||
int ylfrac, thr1;
|
||||
int pk0;
|
||||
|
||||
pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */
|
||||
|
||||
#ifdef NOT_BLI
|
||||
mag = abs(dq / 0x1000); /* prediction difference magnitude */
|
||||
#else
|
||||
mag = dq & 0x7FFF; /* prediction difference magnitude */
|
||||
#endif
|
||||
/* TRANS */
|
||||
ylint = state_ptr->yl >> 15; /* exponent part of yl */
|
||||
ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */
|
||||
@@ -431,7 +492,8 @@ static void update(
|
||||
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
|
||||
else /* for G.721 and 24Kbps G.723 */
|
||||
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
|
||||
if (dq & 0x7FFF) { /* XOR */
|
||||
if (mag)
|
||||
{ /* XOR */
|
||||
if ((dq ^ state_ptr->dq[cnt]) >= 0)
|
||||
state_ptr->b[cnt] += 128;
|
||||
else
|
||||
@@ -442,29 +504,37 @@ static void update(
|
||||
|
||||
for (cnt = 5; cnt > 0; cnt--)
|
||||
state_ptr->dq[cnt] = state_ptr->dq[cnt-1];
|
||||
#ifdef NOT_BLI
|
||||
state_ptr->dq[0] = dq;
|
||||
#else
|
||||
/* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
|
||||
if (mag == 0) {
|
||||
state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20;
|
||||
state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0x20 - 0x400;
|
||||
} else {
|
||||
exp = quan(mag, power2, 15);
|
||||
exp = log2(mag) + 1;
|
||||
state_ptr->dq[0] = (dq >= 0) ?
|
||||
(exp << 6) + ((mag << 6) >> exp) :
|
||||
(exp << 6) + ((mag << 6) >> exp) - 0x400;
|
||||
}
|
||||
#endif
|
||||
|
||||
state_ptr->sr[1] = state_ptr->sr[0];
|
||||
#ifdef NOT_BLI
|
||||
state_ptr->sr[0] = sr;
|
||||
#else
|
||||
/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
|
||||
if (sr == 0) {
|
||||
state_ptr->sr[0] = 0x20;
|
||||
} else if (sr > 0) {
|
||||
exp = quan(sr, power2, 15);
|
||||
exp = log2(sr) + 1;
|
||||
state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
|
||||
} else if (sr > -32768) {
|
||||
} else if (sr > -0x8000) {
|
||||
mag = -sr;
|
||||
exp = quan(mag, power2, 15);
|
||||
exp = log2(mag) + 1;
|
||||
state_ptr->sr[0] = (exp << 6) + ((mag << 6) >> exp) - 0x400;
|
||||
} else
|
||||
state_ptr->sr[0] = 0xFC20;
|
||||
state_ptr->sr[0] = 0x20 - 0x400;
|
||||
#endif
|
||||
|
||||
/* DELAY A */
|
||||
state_ptr->pk[1] = state_ptr->pk[0];
|
||||
@@ -508,30 +578,44 @@ static void update(
|
||||
*/
|
||||
static int g726_decode(int i, struct g726_state *state_ptr)
|
||||
{
|
||||
short sezi, sei, sez, se; /* ACCUM */
|
||||
short y; /* MIX */
|
||||
short sr; /* ADDB */
|
||||
short dq;
|
||||
short dqsez;
|
||||
int sezi, sez, se; /* ACCUM */
|
||||
int y; /* MIX */
|
||||
int sr; /* ADDB */
|
||||
int dq;
|
||||
int dqsez;
|
||||
|
||||
i &= 0x0f; /* mask to get proper bits */
|
||||
#ifdef NOT_BLI
|
||||
sezi = predictor_zero(state_ptr);
|
||||
sez = sezi;
|
||||
se = sezi + predictor_pole(state_ptr); /* estimated signal */
|
||||
#else
|
||||
sezi = predictor_zero(state_ptr);
|
||||
sez = sezi >> 1;
|
||||
sei = sezi + predictor_pole(state_ptr);
|
||||
se = sei >> 1; /* se = estimated signal */
|
||||
se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
|
||||
#endif
|
||||
|
||||
y = step_size(state_ptr); /* dynamic quantizer step size */
|
||||
|
||||
dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */
|
||||
dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized diff. */
|
||||
|
||||
sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq; /* reconst. signal */
|
||||
|
||||
dqsez = sr - se + sez; /* pole prediction diff. */
|
||||
#ifdef NOT_BLI
|
||||
sr = se + dq; /* reconst. signal */
|
||||
dqsez = dq + sez; /* pole prediction diff. */
|
||||
#else
|
||||
sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
|
||||
dqsez = sr - se + sez; /* pole prediction diff. */
|
||||
#endif
|
||||
|
||||
update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
|
||||
|
||||
#ifdef NOT_BLI
|
||||
return (sr >> 10); /* sr was 26-bit dynamic range */
|
||||
#else
|
||||
return (sr << 2); /* sr was 14-bit dynamic range */
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* g726_encode()
|
||||
*
|
||||
@@ -540,30 +624,45 @@ static int g726_decode(int i, struct g726_state *state_ptr)
|
||||
*/
|
||||
static int g726_encode(int sl, struct g726_state *state_ptr)
|
||||
{
|
||||
short sezi, se, sez; /* ACCUM */
|
||||
short d; /* SUBTA */
|
||||
short sr; /* ADDB */
|
||||
short y; /* MIX */
|
||||
short dqsez; /* ADDC */
|
||||
short dq, i;
|
||||
int sezi, se, sez; /* ACCUM */
|
||||
int d; /* SUBTA */
|
||||
int sr; /* ADDB */
|
||||
int y; /* MIX */
|
||||
int dqsez; /* ADDC */
|
||||
int dq, i;
|
||||
|
||||
#ifdef NOT_BLI
|
||||
sl <<= 10; /* 26-bit dynamic range */
|
||||
|
||||
sezi = predictor_zero(state_ptr);
|
||||
sez = sezi;
|
||||
se = sezi + predictor_pole(state_ptr); /* estimated signal */
|
||||
#else
|
||||
sl >>= 2; /* 14-bit dynamic range */
|
||||
|
||||
sezi = predictor_zero(state_ptr);
|
||||
sez = sezi >> 1;
|
||||
se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
|
||||
#endif
|
||||
|
||||
d = sl - se; /* estimation difference */
|
||||
|
||||
/* quantize the prediction difference */
|
||||
y = step_size(state_ptr); /* quantizer step size */
|
||||
#ifdef NOT_BLI
|
||||
d /= 0x1000;
|
||||
#endif
|
||||
i = quantize(d, y, qtab_721, 7); /* i = G726 code */
|
||||
|
||||
dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */
|
||||
|
||||
#ifdef NOT_BLI
|
||||
sr = se + dq; /* reconst. signal */
|
||||
dqsez = dq + sez; /* pole prediction diff. */
|
||||
#else
|
||||
sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
|
||||
|
||||
dqsez = sr + sez - se; /* pole prediction diff. */
|
||||
dqsez = sr - se + sez; /* pole prediction diff. */
|
||||
#endif
|
||||
|
||||
update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
|
||||
|
||||
|
||||
Reference in New Issue
Block a user