mirror of
				https://github.com/asterisk/asterisk.git
				synced 2025-10-25 22:18:07 +00:00 
			
		
		
		
	Correct typos of the following word families: voiced denumerator codeword upsampling constructed residual subroutine conditional quantizing courtesy number ASTERISK-29714 Change-Id: I471fb8086a5277d8f05047fedee22cfa97a4252d
		
			
				
	
	
		
			904 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			904 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Asterisk -- An open source telephony toolkit.
 | |
|  *
 | |
|  * Copyright (C) 1999 - 2006, Digium, Inc.
 | |
|  *
 | |
|  * Mark Spencer <markster@digium.com>
 | |
|  * Kevin P. Fleming <kpfleming@digium.com>
 | |
|  *
 | |
|  * Based on frompcm.c and topcm.c from the Emiliano MIPL browser/
 | |
|  * interpreter.  See http://www.bsdtelephony.com.mx
 | |
|  *
 | |
|  * See http://www.asterisk.org for more information about
 | |
|  * the Asterisk project. Please do not directly contact
 | |
|  * any of the maintainers of this project for assistance;
 | |
|  * the project provides a web site, mailing lists and IRC
 | |
|  * channels for your use.
 | |
|  *
 | |
|  * This program is free software, distributed under the terms of
 | |
|  * the GNU General Public License Version 2. See the LICENSE file
 | |
|  * at the top of the source tree.
 | |
|  */
 | |
| 
 | |
| /*! \file
 | |
|  *
 | |
|  * \brief codec_g726.c - translate between signed linear and ITU G.726-32kbps (both RFC3551 and AAL2 codeword packing)
 | |
|  *
 | |
|  * \ingroup codecs
 | |
|  */
 | |
| 
 | |
| /*** MODULEINFO
 | |
| 	<support_level>core</support_level>
 | |
|  ***/
 | |
| 
 | |
| #include "asterisk.h"
 | |
| 
 | |
| #include "asterisk/lock.h"
 | |
| #include "asterisk/linkedlists.h"
 | |
| #include "asterisk/module.h"
 | |
| #include "asterisk/config.h"
 | |
| #include "asterisk/translate.h"
 | |
| #include "asterisk/utils.h"
 | |
| 
 | |
| #define WANT_ASM
 | |
| #include "log2comp.h"
 | |
| 
 | |
| /* define NOT_BLI to use a faster but not bit-level identical version */
 | |
| /* #define NOT_BLI */
 | |
| 
 | |
| #if defined(NOT_BLI)
 | |
| #	if defined(_MSC_VER)
 | |
| typedef __int64 sint64;
 | |
| #	elif defined(__GNUC__)
 | |
| typedef long long sint64;
 | |
| #	else
 | |
| #		error 64-bit integer type is not defined for your compiler/platform
 | |
| #	endif
 | |
| #endif
 | |
| 
 | |
| #define BUFFER_SAMPLES   8096	/* size for the translation buffers */
 | |
| #define BUF_SHIFT	5
 | |
| 
 | |
| /* Sample frame data */
 | |
| #include "asterisk/slin.h"
 | |
| #include "ex_g726.h"
 | |
| 
 | |
| /*
 | |
|  * The following is the definition of the state structure
 | |
|  * used by the G.726 encoder and decoder to preserve their internal
 | |
|  * state between successive calls.  The meanings of the majority
 | |
|  * of the state structure fields are explained in detail in the
 | |
|  * CCITT Recommendation G.721.  The field names are essentially identical
 | |
|  * to variable names in the bit level description of the coding algorithm
 | |
|  * included in this Recommendation.
 | |
|  */
 | |
| struct g726_state {
 | |
| 	long yl;	/* Locked or steady state step size multiplier. */
 | |
| 	int yu;		/* Unlocked or non-steady state step size multiplier. */
 | |
| 	int dms;	/* Short term energy estimate. */
 | |
| 	int dml;	/* Long term energy estimate. */
 | |
| 	int ap;		/* Linear weighting coefficient of 'yl' and 'yu'. */
 | |
| 	int a[2];	/* Coefficients of pole portion of prediction filter.
 | |
| 			 * stored as fixed-point 1==2^14 */
 | |
| 	int b[6];	/* Coefficients of zero portion of prediction filter.
 | |
| 			 * stored as fixed-point 1==2^14 */
 | |
| 	int pk[2];	/* Signs of previous two samples of a partially
 | |
| 			 * reconstructed signal. */
 | |
| 	int dq[6];  	/* Previous 6 samples of the quantized difference signal
 | |
| 			 * stored as fixed point 1==2^12,
 | |
| 			 * or in internal floating point format */
 | |
| 	int sr[2];	/* Previous 2 samples of the quantized difference signal
 | |
| 			 * stored as fixed point 1==2^12,
 | |
| 			 * or in internal floating point format */
 | |
| 	int td;		/* delayed tone detect, new in 1988 version */
 | |
| };
 | |
| 
 | |
| static int qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400};
 | |
| /*
 | |
|  * Maps G.721 code word to reconstructed scale factor normalized log
 | |
|  * magnitude values.
 | |
|  */
 | |
| static int _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
 | |
| 				425, 373, 323, 273, 213, 135, 4, -2048};
 | |
| 
 | |
| /* Maps G.721 code word to log of scale factor multiplier. */
 | |
| static int _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
 | |
| 				1122, 355, 198, 112, 64, 41, 18, -12};
 | |
| /*
 | |
|  * Maps G.721 code words to a set of values whose long and short
 | |
|  * term averages are computed and then compared to give an indication
 | |
|  * how stationary (steady state) the signal is.
 | |
|  */
 | |
| static int _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
 | |
| 				0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * g72x_init_state()
 | |
|  *
 | |
|  * This routine initializes and/or resets the g726_state structure
 | |
|  * pointed to by 'state_ptr'.
 | |
|  * All the initial state values are specified in the CCITT G.721 document.
 | |
|  */
 | |
| static void g726_init_state(struct g726_state *state_ptr)
 | |
| {
 | |
| 	int		cnta;
 | |
| 
 | |
| 	state_ptr->yl = 34816;
 | |
| 	state_ptr->yu = 544;
 | |
| 	state_ptr->dms = 0;
 | |
| 	state_ptr->dml = 0;
 | |
| 	state_ptr->ap = 0;
 | |
| 	for (cnta = 0; cnta < 2; cnta++) {
 | |
| 		state_ptr->a[cnta] = 0;
 | |
| 		state_ptr->pk[cnta] = 0;
 | |
| #ifdef NOT_BLI
 | |
| 		state_ptr->sr[cnta] = 1;
 | |
| #else
 | |
| 		state_ptr->sr[cnta] = 32;
 | |
| #endif
 | |
| 	}
 | |
| 	for (cnta = 0; cnta < 6; cnta++) {
 | |
| 		state_ptr->b[cnta] = 0;
 | |
| #ifdef NOT_BLI
 | |
| 		state_ptr->dq[cnta] = 1;
 | |
| #else
 | |
| 		state_ptr->dq[cnta] = 32;
 | |
| #endif
 | |
| 	}
 | |
| 	state_ptr->td = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * quan()
 | |
|  *
 | |
|  * quantizes the input val against the table of integers.
 | |
|  * It returns i if table[i - 1] <= val < table[i].
 | |
|  *
 | |
|  * Using linear search for simple coding.
 | |
|  */
 | |
| static int quan(int val, int *table, int size)
 | |
| {
 | |
| 	int		i;
 | |
| 
 | |
| 	for (i = 0; i < size && val >= *table; ++i, ++table)
 | |
| 		;
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| #ifdef NOT_BLI /* faster non-identical version */
 | |
| 
 | |
| /*
 | |
|  * predictor_zero()
 | |
|  *
 | |
|  * computes the estimated signal from 6-zero predictor.
 | |
|  *
 | |
|  */
 | |
| static int predictor_zero(struct g726_state *state_ptr)
 | |
| {	/* divide by 2 is necessary here to handle negative numbers correctly */
 | |
| 	int i;
 | |
| 	sint64 sezi;
 | |
| 	for (sezi = 0, i = 0; i < 6; i++)			/* ACCUM */
 | |
| 		sezi += (sint64)state_ptr->b[i] * state_ptr->dq[i];
 | |
| 	return (int)(sezi >> 13) / 2 /* 2^14 */;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * predictor_pole()
 | |
|  *
 | |
|  * computes the estimated signal from 2-pole predictor.
 | |
|  *
 | |
|  */
 | |
| static int predictor_pole(struct g726_state *state_ptr)
 | |
| {	/* divide by 2 is necessary here to handle negative numbers correctly */
 | |
| 	return (int)(((sint64)state_ptr->a[1] * state_ptr->sr[1] +
 | |
| 	              (sint64)state_ptr->a[0] * state_ptr->sr[0]) >> 13) / 2 /* 2^14 */;
 | |
| }
 | |
| 
 | |
| #else /* NOT_BLI - identical version */
 | |
| /*
 | |
|  * fmult()
 | |
|  *
 | |
|  * returns the integer product of the fixed-point number "an" (1==2^12) and
 | |
|  * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
 | |
|  */
 | |
| static int fmult(int an, int srn)
 | |
| {
 | |
| 	int		anmag, anexp, anmant;
 | |
| 	int		wanexp, wanmant;
 | |
| 	int		retval;
 | |
| 
 | |
| 	anmag = (an > 0) ? an : ((-an) & 0x1FFF);
 | |
| 	anexp = ilog2(anmag) - 5;
 | |
| 	anmant = (anmag == 0) ? 32 :
 | |
| 	    (anexp >= 0) ? anmag >> anexp : anmag << -anexp;
 | |
| 	wanexp = anexp + ((srn >> 6) & 0xF) - 13;
 | |
| 
 | |
| 	wanmant = (anmant * (srn & 077) + 0x30) >> 4;
 | |
| 	retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
 | |
| 	    (wanmant >> -wanexp);
 | |
| 
 | |
| 	return (((an ^ srn) < 0) ? -retval : retval);
 | |
| }
 | |
| 
 | |
| static int predictor_zero(struct g726_state *state_ptr)
 | |
| {
 | |
| 	int		i;
 | |
| 	int		sezi;
 | |
| 	for (sezi = 0, i = 0; i < 6; i++)			/* ACCUM */
 | |
| 		sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
 | |
| 	return sezi;
 | |
| }
 | |
| 
 | |
| static int predictor_pole(struct g726_state *state_ptr)
 | |
| {
 | |
| 	return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
 | |
| 			fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
 | |
| }
 | |
| 
 | |
| #endif /* NOT_BLI */
 | |
| 
 | |
| /*
 | |
|  * step_size()
 | |
|  *
 | |
|  * computes the quantization step size of the adaptive quantizer.
 | |
|  *
 | |
|  */
 | |
| static int step_size(struct g726_state *state_ptr)
 | |
| {
 | |
| 	int y, dif, al;
 | |
| 
 | |
| 	if (state_ptr->ap >= 256) {
 | |
| 		return state_ptr->yu;
 | |
| 	}
 | |
| 
 | |
| 	y = state_ptr->yl >> 6;
 | |
| 	dif = state_ptr->yu - y;
 | |
| 	al = state_ptr->ap >> 2;
 | |
| 
 | |
| 	if (dif > 0) {
 | |
| 		y += (dif * al) >> 6;
 | |
| 	} else if (dif < 0) {
 | |
| 		y += (dif * al + 0x3F) >> 6;
 | |
| 	}
 | |
| 	return y;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * quantize()
 | |
|  *
 | |
|  * Given a raw sample, 'd', of the difference signal and a
 | |
|  * quantization step size scale factor, 'y', this routine returns the
 | |
|  * ADPCM codeword to which that sample gets quantized.  The step
 | |
|  * size scale factor division operation is done in the log base 2 domain
 | |
|  * as a subtraction.
 | |
|  */
 | |
| static int quantize(
 | |
| 	int		d,	/* Raw difference signal sample */
 | |
| 	int		y,	/* Step size multiplier */
 | |
| 	int		*table,	/* quantization table */
 | |
| 	int		size)	/* table size of integers */
 | |
| {
 | |
| 	int		dqm;	/* Magnitude of 'd' */
 | |
| 	int		exp;	/* Integer part of base 2 log of 'd' */
 | |
| 	int		mant;	/* Fractional part of base 2 log */
 | |
| 	int		dl;		/* Log of magnitude of 'd' */
 | |
| 	int		dln;	/* Step size scale factor normalized log */
 | |
| 	int		i;
 | |
| 
 | |
| 	/*
 | |
| 	 * LOG
 | |
| 	 *
 | |
| 	 * Compute base 2 log of 'd', and store in 'dl'.
 | |
| 	 */
 | |
| 	dqm = abs(d);
 | |
| 	exp = ilog2(dqm);
 | |
| 	if (exp < 0) {
 | |
| 		exp = 0;
 | |
| 	}
 | |
| 	mant = ((dqm << 7) >> exp) & 0x7F;	/* Fractional portion. */
 | |
| 	dl = (exp << 7) | mant;
 | |
| 
 | |
| 	/*
 | |
| 	 * SUBTB
 | |
| 	 *
 | |
| 	 * "Divide" by step size multiplier.
 | |
| 	 */
 | |
| 	dln = dl - (y >> 2);
 | |
| 
 | |
| 	/*
 | |
| 	 * QUAN
 | |
| 	 *
 | |
| 	 * Obtain codeword i for 'd'.
 | |
| 	 */
 | |
| 	i = quan(dln, table, size);
 | |
| 	if (d < 0) {			/* take 1's complement of i */
 | |
| 		return ((size << 1) + 1 - i);
 | |
| 	} else if (i == 0) {		/* take 1's complement of 0 */
 | |
| 		return ((size << 1) + 1); /* new in 1988 */
 | |
| 	} else {
 | |
| 		return i;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * reconstruct()
 | |
|  *
 | |
|  * Returns reconstructed difference signal 'dq' obtained from
 | |
|  * codeword 'i' and quantization step size scale factor 'y'.
 | |
|  * Multiplication is performed in log base 2 domain as addition.
 | |
|  */
 | |
| static int reconstruct(
 | |
| 	int		sign,	/* 0 for non-negative value */
 | |
| 	int		dqln,	/* G.72x codeword */
 | |
| 	int		y)	/* Step size multiplier */
 | |
| {
 | |
| 	int		dql;	/* Log of 'dq' magnitude */
 | |
| 	int		dex;	/* Integer part of log */
 | |
| 	int		dqt;
 | |
| 	int		dq;	/* Reconstructed difference signal sample */
 | |
| 
 | |
| 	dql = dqln + (y >> 2);	/* ADDA */
 | |
| 
 | |
| 	if (dql < 0) {
 | |
| #ifdef NOT_BLI
 | |
| 		return (sign) ? -1 : 1;
 | |
| #else
 | |
| 		return (sign) ? -0x8000 : 0;
 | |
| #endif
 | |
| 	} else {		/* ANTILOG */
 | |
| 		dex = (dql >> 7) & 15;
 | |
| 		dqt = 128 + (dql & 127);
 | |
| #ifdef NOT_BLI
 | |
| 		dq = ((dqt << 19) >> (14 - dex));
 | |
| 		return (sign) ? -dq : dq;
 | |
| #else
 | |
| 		dq = (dqt << 7) >> (14 - dex);
 | |
| 		return (sign) ? (dq - 0x8000) : dq;
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * update()
 | |
|  *
 | |
|  * updates the state variables for each output code
 | |
|  */
 | |
| static void update(
 | |
| 	int		code_size,	/* distinguish 723_40 with others */
 | |
| 	int		y,		/* quantizer step size */
 | |
| 	int		wi,		/* scale factor multiplier */
 | |
| 	int		fi,		/* for long/short term energies */
 | |
| 	int		dq,		/* quantized prediction difference */
 | |
| 	int		sr,		/* reconstructed signal */
 | |
| 	int		dqsez,		/* difference from 2-pole predictor */
 | |
| 	struct g726_state *state_ptr)	/* coder state pointer */
 | |
| {
 | |
| 	int		cnt;
 | |
| 	int		mag;		/* Adaptive predictor, FLOAT A */
 | |
| #ifndef NOT_BLI
 | |
| 	int		exp;
 | |
| #endif
 | |
| 	int		a2p=0;		/* LIMC */
 | |
| 	int		a1ul;		/* UPA1 */
 | |
| 	int		pks1;		/* UPA2 */
 | |
| 	int		fa1;
 | |
| 	int		tr;			/* tone/transition detector */
 | |
| 	int		ylint, thr2, dqthr;
 | |
| 	int		ylfrac, thr1;
 | |
| 	int		pk0;
 | |
| 
 | |
| 	pk0 = (dqsez < 0) ? 1 : 0;	/* needed in updating predictor poles */
 | |
| 
 | |
| #ifdef NOT_BLI
 | |
| 	mag = abs(dq / 0x1000); /* prediction difference magnitude */
 | |
| #else
 | |
| 	mag = dq & 0x7FFF;		/* prediction difference magnitude */
 | |
| #endif
 | |
| 	/* TRANS */
 | |
| 	ylint = state_ptr->yl >> 15;	/* exponent part of yl */
 | |
| 	ylfrac = (state_ptr->yl >> 10) & 0x1F;	/* fractional part of yl */
 | |
| 	thr1 = (32 + ylfrac) << ylint;		/* threshold */
 | |
| 	thr2 = (ylint > 9) ? 31 << 10 : thr1;	/* limit thr2 to 31 << 10 */
 | |
| 	dqthr = (thr2 + (thr2 >> 1)) >> 1;	/* dqthr = 0.75 * thr2 */
 | |
| 	if (state_ptr->td == 0) {		/* signal supposed voice */
 | |
| 		tr = 0;
 | |
| 	} else if (mag <= dqthr) {		/* supposed data, but small mag */
 | |
| 		tr = 0;			/* treated as voice */
 | |
| 	} else {				/* signal is data (modem) */
 | |
| 		tr = 1;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Quantizer scale factor adaptation.
 | |
| 	 */
 | |
| 
 | |
| 	/* FUNCTW & FILTD & DELAY */
 | |
| 	/* update non-steady state step size multiplier */
 | |
| 	state_ptr->yu = y + ((wi - y) >> 5);
 | |
| 
 | |
| 	/* LIMB */
 | |
| 	if (state_ptr->yu < 544) {	/* 544 <= yu <= 5120 */
 | |
| 		state_ptr->yu = 544;
 | |
| 	} else if (state_ptr->yu > 5120) {
 | |
| 		state_ptr->yu = 5120;
 | |
| 	}
 | |
| 
 | |
| 	/* FILTE & DELAY */
 | |
| 	/* update steady state step size multiplier */
 | |
| 	state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
 | |
| 
 | |
| 	/*
 | |
| 	 * Adaptive predictor coefficients.
 | |
| 	 */
 | |
| 	if (tr == 1) {			/* reset a's and b's for modem signal */
 | |
| 		state_ptr->a[0] = 0;
 | |
| 		state_ptr->a[1] = 0;
 | |
| 		state_ptr->b[0] = 0;
 | |
| 		state_ptr->b[1] = 0;
 | |
| 		state_ptr->b[2] = 0;
 | |
| 		state_ptr->b[3] = 0;
 | |
| 		state_ptr->b[4] = 0;
 | |
| 		state_ptr->b[5] = 0;
 | |
| 	} else {			/* update a's and b's */
 | |
| 		pks1 = pk0 ^ state_ptr->pk[0];		/* UPA2 */
 | |
| 
 | |
| 		/* update predictor pole a[1] */
 | |
| 		a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
 | |
| 		if (dqsez != 0) {
 | |
| 			fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
 | |
| 			if (fa1 < -8191) {	/* a2p = function of fa1 */
 | |
| 				a2p -= 0x100;
 | |
| 			} else if (fa1 > 8191) {
 | |
| 				a2p += 0xFF;
 | |
| 			} else {
 | |
| 				a2p += fa1 >> 5;
 | |
| 			}
 | |
| 
 | |
| 			if (pk0 ^ state_ptr->pk[1]) {
 | |
| 				/* LIMC */
 | |
| 				if (a2p <= -12160) {
 | |
| 					a2p = -12288;
 | |
| 				} else if (a2p >= 12416) {
 | |
| 					a2p = 12288;
 | |
| 				} else {
 | |
| 					a2p -= 0x80;
 | |
| 				}
 | |
| 			} else if (a2p <= -12416) {
 | |
| 				a2p = -12288;
 | |
| 			} else if (a2p >= 12160) {
 | |
| 				a2p = 12288;
 | |
| 			} else {
 | |
| 				a2p += 0x80;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* TRIGB & DELAY */
 | |
| 		state_ptr->a[1] = a2p;
 | |
| 
 | |
| 		/* UPA1 */
 | |
| 		/* update predictor pole a[0] */
 | |
| 		state_ptr->a[0] -= state_ptr->a[0] >> 8;
 | |
| 		if (dqsez != 0) {
 | |
| 			if (pks1 == 0)
 | |
| 				state_ptr->a[0] += 192;
 | |
| 			else
 | |
| 				state_ptr->a[0] -= 192;
 | |
| 		}
 | |
| 		/* LIMD */
 | |
| 		a1ul = 15360 - a2p;
 | |
| 		if (state_ptr->a[0] < -a1ul) {
 | |
| 			state_ptr->a[0] = -a1ul;
 | |
| 		} else if (state_ptr->a[0] > a1ul) {
 | |
| 			state_ptr->a[0] = a1ul;
 | |
| 		}
 | |
| 
 | |
| 		/* UPB : update predictor zeros b[6] */
 | |
| 		for (cnt = 0; cnt < 6; cnt++) {
 | |
| 			if (code_size == 5) {		/* for 40Kbps G.723 */
 | |
| 				state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
 | |
| 			} else {			/* for G.721 and 24Kbps G.723 */
 | |
| 				state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
 | |
| 			}
 | |
| 			if (mag) {	/* XOR */
 | |
| 				if ((dq ^ state_ptr->dq[cnt]) >= 0) {
 | |
| 					state_ptr->b[cnt] += 128;
 | |
| 				} else {
 | |
| 					state_ptr->b[cnt] -= 128;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (cnt = 5; cnt > 0; cnt--)
 | |
| 		state_ptr->dq[cnt] = state_ptr->dq[cnt-1];
 | |
| #ifdef NOT_BLI
 | |
| 	state_ptr->dq[0] = dq;
 | |
| #else
 | |
| 	/* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
 | |
| 	if (mag == 0) {
 | |
| 		state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0x20 - 0x400;
 | |
| 	} else {
 | |
| 		exp = ilog2(mag) + 1;
 | |
| 		state_ptr->dq[0] = (dq >= 0) ?
 | |
| 		    (exp << 6) + ((mag << 6) >> exp) :
 | |
| 		    (exp << 6) + ((mag << 6) >> exp) - 0x400;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	state_ptr->sr[1] = state_ptr->sr[0];
 | |
| #ifdef NOT_BLI
 | |
| 	state_ptr->sr[0] = sr;
 | |
| #else
 | |
| 	/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
 | |
| 	if (sr == 0) {
 | |
| 		state_ptr->sr[0] = 0x20;
 | |
| 	} else if (sr > 0) {
 | |
| 		exp = ilog2(sr) + 1;
 | |
| 		state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
 | |
| 	} else if (sr > -0x8000) {
 | |
| 		mag = -sr;
 | |
| 		exp = ilog2(mag) + 1;
 | |
| 		state_ptr->sr[0] =  (exp << 6) + ((mag << 6) >> exp) - 0x400;
 | |
| 	} else
 | |
| 		state_ptr->sr[0] = 0x20 - 0x400;
 | |
| #endif
 | |
| 
 | |
| 	/* DELAY A */
 | |
| 	state_ptr->pk[1] = state_ptr->pk[0];
 | |
| 	state_ptr->pk[0] = pk0;
 | |
| 
 | |
| 	/* TONE */
 | |
| 	if (tr == 1) {		/* this sample has been treated as data */
 | |
| 		state_ptr->td = 0;	/* next one will be treated as voice */
 | |
| 	} else if (a2p < -11776) {	/* small sample-to-sample correlation */
 | |
| 		state_ptr->td = 1;	/* signal may be data */
 | |
| 	} else {				/* signal is voice */
 | |
| 		state_ptr->td = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Adaptation speed control.
 | |
| 	 */
 | |
| 	state_ptr->dms += (fi - state_ptr->dms) >> 5;		/* FILTA */
 | |
| 	state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7);	/* FILTB */
 | |
| 
 | |
| 	if (tr == 1) {
 | |
| 		state_ptr->ap = 256;
 | |
| 	} else if (y < 1536) {					/* SUBTC */
 | |
| 		state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
 | |
| 	} else if (state_ptr->td == 1) {
 | |
| 		state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
 | |
| 	} else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
 | |
| 	    (state_ptr->dml >> 3)) {
 | |
| 		state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
 | |
| 	} else {
 | |
| 		state_ptr->ap += (-state_ptr->ap) >> 4;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * g726_decode()
 | |
|  *
 | |
|  * Description:
 | |
|  *
 | |
|  * Decodes a 4-bit code of G.726-32 encoded data of i and
 | |
|  * returns the resulting linear PCM, A-law or u-law value.
 | |
|  * return -1 for unknown out_coding value.
 | |
|  */
 | |
| static int g726_decode(int	i, struct g726_state *state_ptr)
 | |
| {
 | |
| 	int		sezi, sez, se;	/* ACCUM */
 | |
| 	int		y;			/* MIX */
 | |
| 	int		sr;			/* ADDB */
 | |
| 	int		dq;
 | |
| 	int		dqsez;
 | |
| 
 | |
| 	i &= 0x0f;			/* mask to get proper bits */
 | |
| #ifdef NOT_BLI
 | |
| 	sezi = predictor_zero(state_ptr);
 | |
| 	sez = sezi;
 | |
| 	se = sezi + predictor_pole(state_ptr);	/* estimated signal */
 | |
| #else
 | |
| 	sezi = predictor_zero(state_ptr);
 | |
| 	sez = sezi >> 1;
 | |
| 	se = (sezi + predictor_pole(state_ptr)) >> 1;	/* estimated signal */
 | |
| #endif
 | |
| 
 | |
| 	y = step_size(state_ptr);	/* dynamic quantizer step size */
 | |
| 
 | |
| 	dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized diff. */
 | |
| 
 | |
| #ifdef NOT_BLI
 | |
| 	sr = se + dq;				/* reconst. signal */
 | |
| 	dqsez = dq + sez;			/* pole prediction diff. */
 | |
| #else
 | |
| 	sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq;	/* reconst. signal */
 | |
| 	dqsez = sr - se + sez;		/* pole prediction diff. */
 | |
| #endif
 | |
| 
 | |
| 	update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
 | |
| 
 | |
| #ifdef NOT_BLI
 | |
| 	return (sr >> 10);	/* sr was 26-bit dynamic range */
 | |
| #else
 | |
| 	return (sr << 2);	/* sr was 14-bit dynamic range */
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * g726_encode()
 | |
|  *
 | |
|  * Encodes the input vale of linear PCM, A-law or u-law data sl and returns
 | |
|  * the resulting code. -1 is returned for unknown input coding value.
 | |
|  */
 | |
| static int g726_encode(int sl, struct g726_state *state_ptr)
 | |
| {
 | |
| 	int		sezi, se, sez;		/* ACCUM */
 | |
| 	int		d;			/* SUBTA */
 | |
| 	int		sr;			/* ADDB */
 | |
| 	int		y;			/* MIX */
 | |
| 	int		dqsez;			/* ADDC */
 | |
| 	int		dq, i;
 | |
| 
 | |
| #ifdef NOT_BLI
 | |
| 	sl <<= 10;			/* 26-bit dynamic range */
 | |
| 
 | |
| 	sezi = predictor_zero(state_ptr);
 | |
| 	sez = sezi;
 | |
| 	se = sezi + predictor_pole(state_ptr);	/* estimated signal */
 | |
| #else
 | |
| 	sl >>= 2;			/* 14-bit dynamic range */
 | |
| 
 | |
| 	sezi = predictor_zero(state_ptr);
 | |
| 	sez = sezi >> 1;
 | |
| 	se = (sezi + predictor_pole(state_ptr)) >> 1;	/* estimated signal */
 | |
| #endif
 | |
| 
 | |
| 	d = sl - se;				/* estimation difference */
 | |
| 
 | |
| 	/* quantize the prediction difference */
 | |
| 	y = step_size(state_ptr);		/* quantizer step size */
 | |
| #ifdef NOT_BLI
 | |
| 	d /= 0x1000;
 | |
| #endif
 | |
| 	i = quantize(d, y, qtab_721, 7);	/* i = G726 code */
 | |
| 
 | |
| 	dq = reconstruct(i & 8, _dqlntab[i], y);	/* quantized est diff */
 | |
| 
 | |
| #ifdef NOT_BLI
 | |
| 	sr = se + dq;				/* reconst. signal */
 | |
| 	dqsez = dq + sez;			/* pole prediction diff. */
 | |
| #else
 | |
| 	sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq;	/* reconst. signal */
 | |
| 	dqsez = sr - se + sez;			/* pole prediction diff. */
 | |
| #endif
 | |
| 
 | |
| 	update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Private workspace for translating signed linear signals to G726.
 | |
|  * Don't bother to define two distinct structs.
 | |
|  */
 | |
| 
 | |
| struct g726_coder_pvt {
 | |
| 	/* buffer any odd byte in input - 0x80 + (value & 0xf) if present */
 | |
| 	unsigned char next_flag;
 | |
| 	struct g726_state g726;
 | |
| };
 | |
| 
 | |
| /*! \brief init a new instance of g726_coder_pvt. */
 | |
| static int lintog726_new(struct ast_trans_pvt *pvt)
 | |
| {
 | |
| 	struct g726_coder_pvt *tmp = pvt->pvt;
 | |
| 
 | |
| 	g726_init_state(&tmp->g726);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*! \brief decode packed 4-bit G726 values (AAL2 packing) and store in buffer. */
 | |
| static int g726aal2tolin_framein (struct ast_trans_pvt *pvt, struct ast_frame *f)
 | |
| {
 | |
| 	struct g726_coder_pvt *tmp = pvt->pvt;
 | |
| 	unsigned char *src = f->data.ptr;
 | |
| 	int16_t *dst = pvt->outbuf.i16 + pvt->samples;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < f->datalen; i++) {
 | |
| 		*dst++ = g726_decode((src[i] >> 4) & 0xf, &tmp->g726);
 | |
| 		*dst++ = g726_decode(src[i] & 0x0f, &tmp->g726);
 | |
| 	}
 | |
| 
 | |
| 	pvt->samples += f->samples;
 | |
| 	pvt->datalen += 2 * f->samples; /* 2 bytes/sample */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*! \brief compress and store data (4-bit G726 samples, AAL2 packing) in outbuf */
 | |
| static int lintog726aal2_framein(struct ast_trans_pvt *pvt, struct ast_frame *f)
 | |
| {
 | |
| 	struct g726_coder_pvt *tmp = pvt->pvt;
 | |
| 	int16_t *src = f->data.ptr;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < f->samples; i++) {
 | |
| 		unsigned char d = g726_encode(src[i], &tmp->g726); /* this sample */
 | |
| 
 | |
| 		if (tmp->next_flag & 0x80) {	/* merge with leftover sample */
 | |
| 			pvt->outbuf.c[pvt->datalen++] = ((tmp->next_flag & 0xf)<< 4) | d;
 | |
| 			pvt->samples += 2;	/* 2 samples per byte */
 | |
| 			tmp->next_flag = 0;
 | |
| 		} else {
 | |
| 			tmp->next_flag = 0x80 | d;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*! \brief decode packed 4-bit G726 values (RFC3551 packing) and store in buffer. */
 | |
| static int g726tolin_framein (struct ast_trans_pvt *pvt, struct ast_frame *f)
 | |
| {
 | |
| 	struct g726_coder_pvt *tmp = pvt->pvt;
 | |
| 	unsigned char *src = f->data.ptr;
 | |
| 	int16_t *dst = pvt->outbuf.i16 + pvt->samples;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < f->datalen; i++) {
 | |
| 		*dst++ = g726_decode(src[i] & 0x0f, &tmp->g726);
 | |
| 		*dst++ = g726_decode((src[i] >> 4) & 0xf, &tmp->g726);
 | |
| 	}
 | |
| 
 | |
| 	pvt->samples += f->samples;
 | |
| 	pvt->datalen += 2 * f->samples; /* 2 bytes/sample */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*! \brief compress and store data (4-bit G726 samples, RFC3551 packing) in outbuf */
 | |
| static int lintog726_framein(struct ast_trans_pvt *pvt, struct ast_frame *f)
 | |
| {
 | |
| 	struct g726_coder_pvt *tmp = pvt->pvt;
 | |
| 	int16_t *src = f->data.ptr;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < f->samples; i++) {
 | |
| 		unsigned char d = g726_encode(src[i], &tmp->g726); /* this sample */
 | |
| 
 | |
| 		if (tmp->next_flag & 0x80) {	/* merge with leftover sample */
 | |
| 			pvt->outbuf.c[pvt->datalen++] = (d << 4) | (tmp->next_flag & 0xf);
 | |
| 			pvt->samples += 2;	/* 2 samples per byte */
 | |
| 			tmp->next_flag = 0;
 | |
| 		} else {
 | |
| 			tmp->next_flag = 0x80 | d;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct ast_translator g726tolin = {
 | |
| 	.name = "g726tolin",
 | |
| 	.src_codec = {
 | |
| 		.name = "g726",
 | |
| 		.type = AST_MEDIA_TYPE_AUDIO,
 | |
| 		.sample_rate = 8000,
 | |
| 	},
 | |
| 	.dst_codec = {
 | |
| 		.name = "slin",
 | |
| 		.type = AST_MEDIA_TYPE_AUDIO,
 | |
| 		.sample_rate = 8000,
 | |
| 	},
 | |
| 	.format = "slin",
 | |
| 	.newpvt = lintog726_new,	/* same for both directions */
 | |
| 	.framein = g726tolin_framein,
 | |
| 	.sample = g726_sample,
 | |
| 	.desc_size = sizeof(struct g726_coder_pvt),
 | |
| 	.buffer_samples = BUFFER_SAMPLES,
 | |
| 	.buf_size = BUFFER_SAMPLES * 2,
 | |
| };
 | |
| 
 | |
| static struct ast_translator lintog726 = {
 | |
| 	.name = "lintog726",
 | |
| 	.src_codec = {
 | |
| 		.name = "slin",
 | |
| 		.type = AST_MEDIA_TYPE_AUDIO,
 | |
| 		.sample_rate = 8000,
 | |
| 	},
 | |
| 	.dst_codec = {
 | |
| 		.name = "g726",
 | |
| 		.type = AST_MEDIA_TYPE_AUDIO,
 | |
| 		.sample_rate = 8000,
 | |
| 	},
 | |
| 	.format = "g726",
 | |
| 	.newpvt = lintog726_new,	/* same for both directions */
 | |
| 	.framein = lintog726_framein,
 | |
| 	.sample = slin8_sample,
 | |
| 	.desc_size = sizeof(struct g726_coder_pvt),
 | |
| 	.buffer_samples = BUFFER_SAMPLES,
 | |
| 	.buf_size = BUFFER_SAMPLES/2,
 | |
| };
 | |
| 
 | |
| static struct ast_translator g726aal2tolin = {
 | |
| 	.name = "g726aal2tolin",
 | |
| 	.src_codec = {
 | |
| 		.name = "g726aal2",
 | |
| 		.type = AST_MEDIA_TYPE_AUDIO,
 | |
| 		.sample_rate = 8000,
 | |
| 	},
 | |
| 	.dst_codec = {
 | |
| 		.name = "slin",
 | |
| 		.type = AST_MEDIA_TYPE_AUDIO,
 | |
| 		.sample_rate = 8000,
 | |
| 	},
 | |
| 	.format = "slin",
 | |
| 	.newpvt = lintog726_new,	/* same for both directions */
 | |
| 	.framein = g726aal2tolin_framein,
 | |
| 	.sample = g726_sample,
 | |
| 	.desc_size = sizeof(struct g726_coder_pvt),
 | |
| 	.buffer_samples = BUFFER_SAMPLES,
 | |
| 	.buf_size = BUFFER_SAMPLES * 2,
 | |
| };
 | |
| 
 | |
| static struct ast_translator lintog726aal2 = {
 | |
| 	.name = "lintog726aal2",
 | |
| 	.src_codec = {
 | |
| 		.name = "slin",
 | |
| 		.type = AST_MEDIA_TYPE_AUDIO,
 | |
| 		.sample_rate = 8000,
 | |
| 	},
 | |
| 	.dst_codec = {
 | |
| 		.name = "g726aal2",
 | |
| 		.type = AST_MEDIA_TYPE_AUDIO,
 | |
| 		.sample_rate = 8000,
 | |
| 	},
 | |
| 	.format = "g726aal2",
 | |
| 	.newpvt = lintog726_new,	/* same for both directions */
 | |
| 	.framein = lintog726aal2_framein,
 | |
| 	.sample = slin8_sample,
 | |
| 	.desc_size = sizeof(struct g726_coder_pvt),
 | |
| 	.buffer_samples = BUFFER_SAMPLES,
 | |
| 	.buf_size = BUFFER_SAMPLES / 2,
 | |
| };
 | |
| 
 | |
| static int unload_module(void)
 | |
| {
 | |
| 	int res = 0;
 | |
| 
 | |
| 	res |= ast_unregister_translator(&g726tolin);
 | |
| 	res |= ast_unregister_translator(&lintog726);
 | |
| 
 | |
| 	res |= ast_unregister_translator(&g726aal2tolin);
 | |
| 	res |= ast_unregister_translator(&lintog726aal2);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static int load_module(void)
 | |
| {
 | |
| 	int res = 0;
 | |
| 
 | |
| 	res |= ast_register_translator(&g726tolin);
 | |
| 	res |= ast_register_translator(&lintog726);
 | |
| 
 | |
| 	res |= ast_register_translator(&g726aal2tolin);
 | |
| 	res |= ast_register_translator(&lintog726aal2);
 | |
| 
 | |
| 	if (res) {
 | |
| 		unload_module();
 | |
| 		return AST_MODULE_LOAD_DECLINE;
 | |
| 	}
 | |
| 
 | |
| 	return AST_MODULE_LOAD_SUCCESS;
 | |
| }
 | |
| 
 | |
| AST_MODULE_INFO(ASTERISK_GPL_KEY, AST_MODFLAG_DEFAULT, "ITU G.726-32kbps G726 Transcoder",
 | |
| 	.support_level = AST_MODULE_SUPPORT_CORE,
 | |
| 	.load = load_module,
 | |
| 	.unload = unload_module,
 | |
| );
 |