mirror of
				https://github.com/asterisk/asterisk.git
				synced 2025-10-25 22:18:07 +00:00 
			
		
		
		
	git-svn-id: https://origsvn.digium.com/svn/asterisk/branches/1.8@319261 65c4cc65-6c06-0410-ace0-fbb531ad65f3
		
			
				
	
	
		
			1725 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1725 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Asterisk -- An open source telephony toolkit.
 | |
|  *
 | |
|  * Copyright (C) 1999 - 2005, Digium, Inc.
 | |
|  *
 | |
|  * Mark Spencer <markster@digium.com>
 | |
|  *
 | |
|  * Goertzel routines are borrowed from Steve Underwood's tremendous work on the
 | |
|  * DTMF detector.
 | |
|  *
 | |
|  * See http://www.asterisk.org for more information about
 | |
|  * the Asterisk project. Please do not directly contact
 | |
|  * any of the maintainers of this project for assistance;
 | |
|  * the project provides a web site, mailing lists and IRC
 | |
|  * channels for your use.
 | |
|  *
 | |
|  * This program is free software, distributed under the terms of
 | |
|  * the GNU General Public License Version 2. See the LICENSE file
 | |
|  * at the top of the source tree.
 | |
|  */
 | |
| 
 | |
| /*! \file
 | |
|  *
 | |
|  * \brief Convenience Signal Processing routines
 | |
|  *
 | |
|  * \author Mark Spencer <markster@digium.com>
 | |
|  * \author Steve Underwood <steveu@coppice.org>
 | |
|  */
 | |
| 
 | |
| /* Some routines from tone_detect.c by Steven Underwood as published under the zapata library */
 | |
| /*
 | |
| 	tone_detect.c - General telephony tone detection, and specific
 | |
| 					detection of DTMF.
 | |
| 
 | |
| 	Copyright (C) 2001  Steve Underwood <steveu@coppice.org>
 | |
| 
 | |
| 	Despite my general liking of the GPL, I place this code in the
 | |
| 	public domain for the benefit of all mankind - even the slimy
 | |
| 	ones who might try to proprietize my work and use it to my
 | |
| 	detriment.
 | |
| */
 | |
| 
 | |
| #include "asterisk.h"
 | |
| 
 | |
| ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
 | |
| 
 | |
| #include <math.h>
 | |
| 
 | |
| #include "asterisk/frame.h"
 | |
| #include "asterisk/channel.h"
 | |
| #include "asterisk/dsp.h"
 | |
| #include "asterisk/ulaw.h"
 | |
| #include "asterisk/alaw.h"
 | |
| #include "asterisk/utils.h"
 | |
| #include "asterisk/options.h"
 | |
| #include "asterisk/config.h"
 | |
| 
 | |
| /*! Number of goertzels for progress detect */
 | |
| enum gsamp_size {
 | |
| 	GSAMP_SIZE_NA = 183,			/*!< North America - 350, 440, 480, 620, 950, 1400, 1800 Hz */
 | |
| 	GSAMP_SIZE_CR = 188,			/*!< Costa Rica, Brazil - Only care about 425 Hz */
 | |
| 	GSAMP_SIZE_UK = 160 			/*!< UK disconnect goertzel feed - should trigger 400hz */
 | |
| };
 | |
| 
 | |
| enum prog_mode {
 | |
| 	PROG_MODE_NA = 0,
 | |
| 	PROG_MODE_CR,
 | |
| 	PROG_MODE_UK
 | |
| };
 | |
| 
 | |
| enum freq_index { 
 | |
| 	/*! For US modes { */
 | |
| 	HZ_350 = 0,
 | |
| 	HZ_440,
 | |
| 	HZ_480,
 | |
| 	HZ_620,
 | |
| 	HZ_950,
 | |
| 	HZ_1400,
 | |
| 	HZ_1800, /*!< } */
 | |
| 
 | |
| 	/*! For CR/BR modes */
 | |
| 	HZ_425 = 0,
 | |
| 
 | |
| 	/*! For UK mode */
 | |
| 	HZ_350UK = 0,
 | |
| 	HZ_400UK,
 | |
| 	HZ_440UK
 | |
| };
 | |
| 
 | |
| static struct progalias {
 | |
| 	char *name;
 | |
| 	enum prog_mode mode;
 | |
| } aliases[] = {
 | |
| 	{ "us", PROG_MODE_NA },
 | |
| 	{ "ca", PROG_MODE_NA },
 | |
| 	{ "cr", PROG_MODE_CR },
 | |
| 	{ "br", PROG_MODE_CR },
 | |
| 	{ "uk", PROG_MODE_UK },
 | |
| };
 | |
| 
 | |
| static struct progress {
 | |
| 	enum gsamp_size size;
 | |
| 	int freqs[7];
 | |
| } modes[] = {
 | |
| 	{ GSAMP_SIZE_NA, { 350, 440, 480, 620, 950, 1400, 1800 } },	/*!< North America */
 | |
| 	{ GSAMP_SIZE_CR, { 425 } },                                	/*!< Costa Rica, Brazil */
 | |
| 	{ GSAMP_SIZE_UK, { 350, 400, 440 } },                                	/*!< UK */
 | |
| };
 | |
| 
 | |
| /*!\brief This value is the minimum threshold, calculated by averaging all
 | |
|  * of the samples within a frame, for which a frame is determined to either
 | |
|  * be silence (below the threshold) or noise (above the threshold).  Please
 | |
|  * note that while the default threshold is an even exponent of 2, there is
 | |
|  * no requirement that it be so.  The threshold will accept any value between
 | |
|  * 0 and 32767.
 | |
|  */
 | |
| #define DEFAULT_THRESHOLD	512
 | |
| 
 | |
| enum busy_detect {
 | |
| 	BUSY_PERCENT = 10,   	/*!< The percentage difference between the two last silence periods */
 | |
| 	BUSY_PAT_PERCENT = 7,	/*!< The percentage difference between measured and actual pattern */
 | |
| 	BUSY_THRESHOLD = 100,	/*!< Max number of ms difference between max and min times in busy */
 | |
| 	BUSY_MIN = 75,       	/*!< Busy must be at least 80 ms in half-cadence */
 | |
| 	BUSY_MAX =3100       	/*!< Busy can't be longer than 3100 ms in half-cadence */
 | |
| };
 | |
| 
 | |
| /*! Remember last 15 units */
 | |
| #define DSP_HISTORY 		15
 | |
| 
 | |
| #define TONE_THRESH		10.0	/*!< How much louder the tone should be than channel energy */
 | |
| #define TONE_MIN_THRESH 	1e8	/*!< How much tone there should be at least to attempt */
 | |
| 
 | |
| /*! All THRESH_XXX values are in GSAMP_SIZE chunks (us = 22ms) */
 | |
| enum gsamp_thresh {
 | |
| 	THRESH_RING = 8,        	/*!< Need at least 150ms ring to accept */
 | |
| 	THRESH_TALK = 2,        	/*!< Talk detection does not work continuously */
 | |
| 	THRESH_BUSY = 4,        	/*!< Need at least 80ms to accept */
 | |
| 	THRESH_CONGESTION = 4,  	/*!< Need at least 80ms to accept */
 | |
| 	THRESH_HANGUP = 60,     	/*!< Need at least 1300ms to accept hangup */
 | |
| 	THRESH_RING2ANSWER = 300	/*!< Timeout from start of ring to answer (about 6600 ms) */
 | |
| };
 | |
| 
 | |
| #define	MAX_DTMF_DIGITS		128
 | |
| 
 | |
| /* Basic DTMF specs:
 | |
|  *
 | |
|  * Minimum tone on = 40ms
 | |
|  * Minimum tone off = 50ms
 | |
|  * Maximum digit rate = 10 per second
 | |
|  * Normal twist <= 8dB accepted
 | |
|  * Reverse twist <= 4dB accepted
 | |
|  * S/N >= 15dB will detect OK
 | |
|  * Attenuation <= 26dB will detect OK
 | |
|  * Frequency tolerance +- 1.5% will detect, +-3.5% will reject
 | |
|  */
 | |
| 
 | |
| #define DTMF_THRESHOLD		8.0e7
 | |
| #define FAX_THRESHOLD		8.0e7
 | |
| #define FAX_2ND_HARMONIC	2.0     /* 4dB */
 | |
| #define DTMF_NORMAL_TWIST	6.3     /* 8dB */
 | |
| #ifdef	RADIO_RELAX
 | |
| #define DTMF_REVERSE_TWIST          (relax ? 6.5 : 2.5)     /* 4dB normal */
 | |
| #else
 | |
| #define DTMF_REVERSE_TWIST          (relax ? 4.0 : 2.5)     /* 4dB normal */
 | |
| #endif
 | |
| #define DTMF_RELATIVE_PEAK_ROW	6.3     /* 8dB */
 | |
| #define DTMF_RELATIVE_PEAK_COL	6.3     /* 8dB */
 | |
| #define DTMF_2ND_HARMONIC_ROW       (relax ? 1.7 : 2.5)     /* 4dB normal */
 | |
| #define DTMF_2ND_HARMONIC_COL	63.1    /* 18dB */
 | |
| #define DTMF_TO_TOTAL_ENERGY	42.0
 | |
| 
 | |
| #define BELL_MF_THRESHOLD	1.6e9
 | |
| #define BELL_MF_TWIST		4.0     /* 6dB */
 | |
| #define BELL_MF_RELATIVE_PEAK	12.6    /* 11dB */
 | |
| 
 | |
| #if defined(BUSYDETECT_TONEONLY) && defined(BUSYDETECT_COMPARE_TONE_AND_SILENCE)
 | |
| #error You cant use BUSYDETECT_TONEONLY together with BUSYDETECT_COMPARE_TONE_AND_SILENCE
 | |
| #endif
 | |
| 
 | |
| /* The CNG signal consists of the transmission of 1100 Hz for 1/2 second,
 | |
|  * followed by a 3 second silent (2100 Hz OFF) period.
 | |
|  */
 | |
| #define FAX_TONE_CNG_FREQ	1100
 | |
| #define FAX_TONE_CNG_DURATION	500
 | |
| #define FAX_TONE_CNG_DB		16
 | |
| 
 | |
| /* This signal may be sent by the Terminating FAX machine anywhere between
 | |
|  * 1.8 to 2.5 seconds AFTER answering the call.  The CED signal consists
 | |
|  * of a 2100 Hz tone that is from 2.6 to 4 seconds in duration.
 | |
| */
 | |
| #define FAX_TONE_CED_FREQ	2100
 | |
| #define FAX_TONE_CED_DURATION	2600
 | |
| #define FAX_TONE_CED_DB		16
 | |
| 
 | |
| #define SAMPLE_RATE		8000
 | |
| 
 | |
| /* How many samples a frame has.  This constant is used when calculating
 | |
|  * Goertzel block size for tone_detect.  It is only important if we want to
 | |
|  * remove (squelch) the tone. In this case it is important to have block
 | |
|  * size not to exceed size of voice frame.  Otherwise by the moment the tone
 | |
|  * is detected it is too late to squelch it from previous frames.
 | |
|  */
 | |
| #define SAMPLES_IN_FRAME	160
 | |
| 
 | |
| /* MF goertzel size */
 | |
| #define MF_GSIZE		120
 | |
| 
 | |
| /* DTMF goertzel size */
 | |
| #define DTMF_GSIZE		102
 | |
| 
 | |
| /* How many successive hits needed to consider begin of a digit */
 | |
| #define DTMF_HITS_TO_BEGIN	2
 | |
| /* How many successive misses needed to consider end of a digit */
 | |
| #define DTMF_MISSES_TO_END	3
 | |
| 
 | |
| /*!
 | |
|  * \brief The default silence threshold we will use if an alternate
 | |
|  * configured value is not present or is invalid.
 | |
|  */
 | |
| static const int DEFAULT_SILENCE_THRESHOLD = 256;
 | |
| 
 | |
| #define CONFIG_FILE_NAME "dsp.conf"
 | |
| 
 | |
| typedef struct {
 | |
| 	int v2;
 | |
| 	int v3;
 | |
| 	int chunky;
 | |
| 	int fac;
 | |
| 	int samples;
 | |
| } goertzel_state_t;
 | |
| 
 | |
| typedef struct {
 | |
| 	int value;
 | |
| 	int power;
 | |
| } goertzel_result_t;
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
| 	int freq;
 | |
| 	int block_size;
 | |
| 	int squelch;		/* Remove (squelch) tone */
 | |
| 	goertzel_state_t tone;
 | |
| 	float energy;		/* Accumulated energy of the current block */
 | |
| 	int samples_pending;	/* Samples remain to complete the current block */
 | |
| 	int mute_samples;	/* How many additional samples needs to be muted to suppress already detected tone */
 | |
| 
 | |
| 	int hits_required;	/* How many successive blocks with tone we are looking for */
 | |
| 	float threshold;	/* Energy of the tone relative to energy from all other signals to consider a hit */
 | |
| 
 | |
| 	int hit_count;		/* How many successive blocks we consider tone present */
 | |
| 	int last_hit;		/* Indicates if the last processed block was a hit */
 | |
| 
 | |
| } tone_detect_state_t;
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
| 	goertzel_state_t row_out[4];
 | |
| 	goertzel_state_t col_out[4];
 | |
| 	int hits_to_begin;		/* How many successive hits needed to consider begin of a digit */
 | |
| 	int misses_to_end;		/* How many successive misses needed to consider end of a digit */
 | |
| 	int hits;			/* How many successive hits we have seen already */
 | |
| 	int misses;			/* How many successive misses we have seen already */
 | |
| 	int lasthit;
 | |
| 	int current_hit;
 | |
| 	float energy;
 | |
| 	int current_sample;
 | |
| 	int mute_samples;
 | |
| } dtmf_detect_state_t;
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
| 	goertzel_state_t tone_out[6];
 | |
| 	int current_hit;
 | |
| 	int hits[5];
 | |
| 	int current_sample;
 | |
| 	int mute_samples;
 | |
| } mf_detect_state_t;
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
| 	char digits[MAX_DTMF_DIGITS + 1];
 | |
| 	int digitlen[MAX_DTMF_DIGITS + 1];
 | |
| 	int current_digits;
 | |
| 	int detected_digits;
 | |
| 	int lost_digits;
 | |
| 
 | |
| 	union {
 | |
| 		dtmf_detect_state_t dtmf;
 | |
| 		mf_detect_state_t mf;
 | |
| 	} td;
 | |
| } digit_detect_state_t;
 | |
| 
 | |
| static const float dtmf_row[] = {
 | |
| 	697.0,  770.0,  852.0,  941.0
 | |
| };
 | |
| static const float dtmf_col[] = {
 | |
| 	1209.0, 1336.0, 1477.0, 1633.0
 | |
| };
 | |
| static const float mf_tones[] = {
 | |
| 	700.0, 900.0, 1100.0, 1300.0, 1500.0, 1700.0
 | |
| };
 | |
| static const char dtmf_positions[] = "123A" "456B" "789C" "*0#D";
 | |
| static const char bell_mf_positions[] = "1247C-358A--69*---0B----#";
 | |
| static int thresholds[THRESHOLD_MAX];
 | |
| 
 | |
| static inline void goertzel_sample(goertzel_state_t *s, short sample)
 | |
| {
 | |
| 	int v1;
 | |
| 	
 | |
| 	v1 = s->v2;
 | |
| 	s->v2 = s->v3;
 | |
| 	
 | |
| 	s->v3 = (s->fac * s->v2) >> 15;
 | |
| 	s->v3 = s->v3 - v1 + (sample >> s->chunky);
 | |
| 	if (abs(s->v3) > 32768) {
 | |
| 		s->chunky++;
 | |
| 		s->v3 = s->v3 >> 1;
 | |
| 		s->v2 = s->v2 >> 1;
 | |
| 		v1 = v1 >> 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void goertzel_update(goertzel_state_t *s, short *samps, int count)
 | |
| {
 | |
| 	int i;
 | |
| 	
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		goertzel_sample(s, samps[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline float goertzel_result(goertzel_state_t *s)
 | |
| {
 | |
| 	goertzel_result_t r;
 | |
| 	r.value = (s->v3 * s->v3) + (s->v2 * s->v2);
 | |
| 	r.value -= ((s->v2 * s->v3) >> 15) * s->fac;
 | |
| 	r.power = s->chunky * 2;
 | |
| 	return (float)r.value * (float)(1 << r.power);
 | |
| }
 | |
| 
 | |
| static inline void goertzel_init(goertzel_state_t *s, float freq, int samples)
 | |
| {
 | |
| 	s->v2 = s->v3 = s->chunky = 0.0;
 | |
| 	s->fac = (int)(32768.0 * 2.0 * cos(2.0 * M_PI * freq / SAMPLE_RATE));
 | |
| 	s->samples = samples;
 | |
| }
 | |
| 
 | |
| static inline void goertzel_reset(goertzel_state_t *s)
 | |
| {
 | |
| 	s->v2 = s->v3 = s->chunky = 0.0;
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
| 	int start;
 | |
| 	int end;
 | |
| } fragment_t;
 | |
| 
 | |
| /* Note on tone suppression (squelching). Individual detectors (DTMF/MF/generic tone)
 | |
|  * report fragmens of the frame in which detected tone resides and which needs
 | |
|  * to be "muted" in order to suppress the tone. To mark fragment for muting,
 | |
|  * detectors call mute_fragment passing fragment_t there. Multiple fragments
 | |
|  * can be marked and ast_dsp_process later will mute all of them.
 | |
|  *
 | |
|  * Note: When tone starts in the middle of a Goertzel block, it won't be properly
 | |
|  * detected in that block, only in the next. If we only mute the next block
 | |
|  * where tone is actually detected, the user will still hear beginning
 | |
|  * of the tone in preceeding block. This is why we usually want to mute some amount
 | |
|  * of samples preceeding and following the block where tone was detected.
 | |
| */
 | |
| 
 | |
| struct ast_dsp {
 | |
| 	struct ast_frame f;
 | |
| 	int threshold;
 | |
| 	int totalsilence;
 | |
| 	int totalnoise;
 | |
| 	int features;
 | |
| 	int ringtimeout;
 | |
| 	int busymaybe;
 | |
| 	int busycount;
 | |
| 	int busy_tonelength;
 | |
| 	int busy_quietlength;
 | |
| 	int historicnoise[DSP_HISTORY];
 | |
| 	int historicsilence[DSP_HISTORY];
 | |
| 	goertzel_state_t freqs[7];
 | |
| 	int freqcount;
 | |
| 	int gsamps;
 | |
| 	enum gsamp_size gsamp_size;
 | |
| 	enum prog_mode progmode;
 | |
| 	int tstate;
 | |
| 	int tcount;
 | |
| 	int digitmode;
 | |
| 	int faxmode;
 | |
| 	int dtmf_began;
 | |
| 	int display_inband_dtmf_warning;
 | |
| 	float genergy;
 | |
| 	int mute_fragments;
 | |
| 	fragment_t mute_data[5];
 | |
| 	digit_detect_state_t digit_state;
 | |
| 	tone_detect_state_t cng_tone_state;
 | |
| 	tone_detect_state_t ced_tone_state;
 | |
| };
 | |
| 
 | |
| static void mute_fragment(struct ast_dsp *dsp, fragment_t *fragment)
 | |
| {
 | |
| 	if (dsp->mute_fragments >= ARRAY_LEN(dsp->mute_data)) {
 | |
| 		ast_log(LOG_ERROR, "Too many fragments to mute. Ignoring\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	dsp->mute_data[dsp->mute_fragments++] = *fragment;
 | |
| }
 | |
| 
 | |
| static void ast_tone_detect_init(tone_detect_state_t *s, int freq, int duration, int amp)
 | |
| {
 | |
| 	int duration_samples;
 | |
| 	float x;
 | |
| 	int periods_in_block;
 | |
| 
 | |
| 	s->freq = freq;
 | |
| 
 | |
| 	/* Desired tone duration in samples */
 | |
| 	duration_samples = duration * SAMPLE_RATE / 1000;
 | |
| 	/* We want to allow 10% deviation of tone duration */
 | |
| 	duration_samples = duration_samples * 9 / 10;
 | |
| 
 | |
| 	/* If we want to remove tone, it is important to have block size not
 | |
| 	   to exceed frame size. Otherwise by the moment tone is detected it is too late
 | |
|  	   to squelch it from previous frames */
 | |
| 	s->block_size = SAMPLES_IN_FRAME;
 | |
| 
 | |
| 	periods_in_block = s->block_size * freq / SAMPLE_RATE;
 | |
| 
 | |
| 	/* Make sure we will have at least 5 periods at target frequency for analisys.
 | |
| 	   This may make block larger than expected packet and will make squelching impossible
 | |
| 	   but at least we will be detecting the tone */
 | |
| 	if (periods_in_block < 5)
 | |
| 		periods_in_block = 5;
 | |
| 
 | |
| 	/* Now calculate final block size. It will contain integer number of periods */
 | |
| 	s->block_size = periods_in_block * SAMPLE_RATE / freq;
 | |
| 
 | |
| 	/* tone_detect is currently only used to detect fax tones and we
 | |
| 	   do not need suqlching the fax tones */
 | |
| 	s->squelch = 0;
 | |
| 
 | |
| 	/* Account for the first and the last block to be incomplete
 | |
| 	   and thus no tone will be detected in them */
 | |
| 	s->hits_required = (duration_samples - (s->block_size - 1)) / s->block_size;
 | |
| 
 | |
| 	goertzel_init(&s->tone, freq, s->block_size);
 | |
| 
 | |
| 	s->samples_pending = s->block_size;
 | |
| 	s->hit_count = 0;
 | |
| 	s->last_hit = 0;
 | |
| 	s->energy = 0.0;
 | |
| 
 | |
| 	/* We want tone energy to be amp decibels above the rest of the signal (the noise).
 | |
| 	   According to Parseval's theorem the energy computed in time domain equals to energy
 | |
| 	   computed in frequency domain. So subtracting energy in the frequency domain (Goertzel result)
 | |
| 	   from the energy in the time domain we will get energy of the remaining signal (without the tone
 | |
| 	   we are detecting). We will be checking that
 | |
| 		10*log(Ew / (Et - Ew)) > amp
 | |
| 	   Calculate threshold so that we will be actually checking
 | |
| 		Ew > Et * threshold
 | |
| 	*/
 | |
| 
 | |
| 	x = pow(10.0, amp / 10.0);
 | |
| 	s->threshold = x / (x + 1);
 | |
| 
 | |
| 	ast_debug(1, "Setup tone %d Hz, %d ms, block_size=%d, hits_required=%d\n", freq, duration, s->block_size, s->hits_required);
 | |
| }
 | |
| 
 | |
| static void ast_fax_detect_init(struct ast_dsp *s)
 | |
| {
 | |
| 	ast_tone_detect_init(&s->cng_tone_state, FAX_TONE_CNG_FREQ, FAX_TONE_CNG_DURATION, FAX_TONE_CNG_DB);
 | |
| 	ast_tone_detect_init(&s->ced_tone_state, FAX_TONE_CED_FREQ, FAX_TONE_CED_DURATION, FAX_TONE_CED_DB);
 | |
| }
 | |
| 
 | |
| static void ast_dtmf_detect_init (dtmf_detect_state_t *s)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	s->lasthit = 0;
 | |
| 	s->current_hit = 0;
 | |
| 	for (i = 0;  i < 4;  i++) {
 | |
| 		goertzel_init(&s->row_out[i], dtmf_row[i], DTMF_GSIZE);
 | |
| 		goertzel_init(&s->col_out[i], dtmf_col[i], DTMF_GSIZE);
 | |
| 		s->energy = 0.0;
 | |
| 	}
 | |
| 	s->current_sample = 0;
 | |
| 	s->hits = 0;
 | |
| 	s->misses = 0;
 | |
| 
 | |
| 	s->hits_to_begin = DTMF_HITS_TO_BEGIN;
 | |
| 	s->misses_to_end = DTMF_MISSES_TO_END;
 | |
| }
 | |
| 
 | |
| static void ast_mf_detect_init (mf_detect_state_t *s)
 | |
| {
 | |
| 	int i;
 | |
| 	s->hits[0] = s->hits[1] = s->hits[2] = s->hits[3] = s->hits[4] = 0;
 | |
| 	for (i = 0;  i < 6;  i++) {
 | |
| 		goertzel_init (&s->tone_out[i], mf_tones[i], 160);
 | |
| 	}
 | |
| 	s->current_sample = 0;
 | |
| 	s->current_hit = 0;
 | |
| }
 | |
| 
 | |
| static void ast_digit_detect_init(digit_detect_state_t *s, int mf)
 | |
| {
 | |
| 	s->current_digits = 0;
 | |
| 	s->detected_digits = 0;
 | |
| 	s->lost_digits = 0;
 | |
| 	s->digits[0] = '\0';
 | |
| 
 | |
| 	if (mf) {
 | |
| 		ast_mf_detect_init(&s->td.mf);
 | |
| 	} else {
 | |
| 		ast_dtmf_detect_init(&s->td.dtmf);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int tone_detect(struct ast_dsp *dsp, tone_detect_state_t *s, int16_t *amp, int samples)
 | |
| {
 | |
| 	float tone_energy;
 | |
| 	int i;
 | |
| 	int hit = 0;
 | |
| 	int limit;
 | |
| 	int res = 0;
 | |
| 	int16_t *ptr;
 | |
| 	int start, end;
 | |
| 	fragment_t mute = {0, 0};
 | |
| 
 | |
| 	if (s->squelch && s->mute_samples > 0) {
 | |
| 		mute.end = (s->mute_samples < samples) ? s->mute_samples : samples;
 | |
| 		s->mute_samples -= mute.end;
 | |
| 	}
 | |
| 
 | |
| 	for (start = 0;  start < samples;  start = end) {
 | |
| 		/* Process in blocks. */
 | |
| 		limit = samples - start;
 | |
| 		if (limit > s->samples_pending) {
 | |
| 			limit = s->samples_pending;
 | |
| 		}
 | |
| 		end = start + limit;
 | |
| 
 | |
| 		for (i = limit, ptr = amp ; i > 0; i--, ptr++) {
 | |
| 			/* signed 32 bit int should be enough to suqare any possible signed 16 bit value */
 | |
| 			s->energy += (int32_t) *ptr * (int32_t) *ptr;
 | |
| 
 | |
| 			goertzel_sample(&s->tone, *ptr);
 | |
| 		}
 | |
| 
 | |
| 		s->samples_pending -= limit;
 | |
| 
 | |
| 		if (s->samples_pending) {
 | |
| 			/* Finished incomplete (last) block */
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		tone_energy = goertzel_result(&s->tone);
 | |
| 
 | |
| 		/* Scale to make comparable */
 | |
| 		tone_energy *= 2.0;
 | |
| 		s->energy *= s->block_size;
 | |
| 
 | |
| 		ast_debug(10, "tone %d, Ew=%.2E, Et=%.2E, s/n=%10.2f\n", s->freq, tone_energy, s->energy, tone_energy / (s->energy - tone_energy));
 | |
| 		hit = 0;
 | |
| 		if (tone_energy > s->energy * s->threshold) {
 | |
| 			ast_debug(10, "Hit! count=%d\n", s->hit_count);
 | |
| 			hit = 1;
 | |
| 		}
 | |
| 
 | |
| 		if (s->hit_count) {
 | |
| 			s->hit_count++;
 | |
| 		}
 | |
| 
 | |
| 		if (hit == s->last_hit) {
 | |
| 			if (!hit) {
 | |
| 				/* Two successive misses. Tone ended */
 | |
| 				s->hit_count = 0;
 | |
| 			} else if (!s->hit_count) {
 | |
| 				s->hit_count++;
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		if (s->hit_count == s->hits_required) {
 | |
| 			ast_debug(1, "%d Hz done detected\n", s->freq);
 | |
| 			res = 1;
 | |
| 		}
 | |
| 
 | |
| 		s->last_hit = hit;
 | |
| 
 | |
| 		/* If we had a hit in this block, include it into mute fragment */
 | |
| 		if (s->squelch && hit) {
 | |
| 			if (mute.end < start - s->block_size) {
 | |
| 				/* There is a gap between fragments */
 | |
| 				mute_fragment(dsp, &mute);
 | |
| 				mute.start = (start > s->block_size) ? (start - s->block_size) : 0;
 | |
| 			}
 | |
| 			mute.end = end + s->block_size;
 | |
| 		}
 | |
| 
 | |
| 		/* Reinitialise the detector for the next block */
 | |
| 		/* Reset for the next block */
 | |
| 		goertzel_reset(&s->tone);
 | |
| 
 | |
| 		/* Advance to the next block */
 | |
| 		s->energy = 0.0;
 | |
| 		s->samples_pending = s->block_size;
 | |
| 
 | |
| 		amp += limit;
 | |
| 	}
 | |
| 
 | |
| 	if (s->squelch && mute.end) {
 | |
| 		if (mute.end > samples) {
 | |
| 			s->mute_samples = mute.end - samples;
 | |
| 			mute.end = samples;
 | |
| 		}
 | |
| 		mute_fragment(dsp, &mute);
 | |
| 	}
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static void store_digit(digit_detect_state_t *s, char digit)
 | |
| {
 | |
| 	s->detected_digits++;
 | |
| 	if (s->current_digits < MAX_DTMF_DIGITS) {
 | |
| 		s->digitlen[s->current_digits] = 0;
 | |
| 		s->digits[s->current_digits++] = digit;
 | |
| 		s->digits[s->current_digits] = '\0';
 | |
| 	} else {
 | |
| 		ast_log(LOG_WARNING, "Digit lost due to full buffer\n");
 | |
| 		s->lost_digits++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int dtmf_detect(struct ast_dsp *dsp, digit_detect_state_t *s, int16_t amp[], int samples, int squelch, int relax)
 | |
| {
 | |
| 	float row_energy[4];
 | |
| 	float col_energy[4];
 | |
| 	float famp;
 | |
| 	int i;
 | |
| 	int j;
 | |
| 	int sample;
 | |
| 	int best_row;
 | |
| 	int best_col;
 | |
| 	int hit;
 | |
| 	int limit;
 | |
| 	fragment_t mute = {0, 0};
 | |
| 
 | |
| 	if (squelch && s->td.dtmf.mute_samples > 0) {
 | |
| 		mute.end = (s->td.dtmf.mute_samples < samples) ? s->td.dtmf.mute_samples : samples;
 | |
| 		s->td.dtmf.mute_samples -= mute.end;
 | |
| 	}
 | |
| 
 | |
| 	hit = 0;
 | |
| 	for (sample = 0; sample < samples; sample = limit) {
 | |
| 		/* DTMF_GSIZE is optimised to meet the DTMF specs. */
 | |
| 		if ((samples - sample) >= (DTMF_GSIZE - s->td.dtmf.current_sample)) {
 | |
| 			limit = sample + (DTMF_GSIZE - s->td.dtmf.current_sample);
 | |
| 		} else {
 | |
| 			limit = samples;
 | |
| 		}
 | |
| 		/* The following unrolled loop takes only 35% (rough estimate) of the 
 | |
| 		   time of a rolled loop on the machine on which it was developed */
 | |
| 		for (j = sample; j < limit; j++) {
 | |
| 			famp = amp[j];
 | |
| 			s->td.dtmf.energy += famp*famp;
 | |
| 			/* With GCC 2.95, the following unrolled code seems to take about 35%
 | |
| 			   (rough estimate) as long as a neat little 0-3 loop */
 | |
| 			goertzel_sample(s->td.dtmf.row_out, amp[j]);
 | |
| 			goertzel_sample(s->td.dtmf.col_out, amp[j]);
 | |
| 			goertzel_sample(s->td.dtmf.row_out + 1, amp[j]);
 | |
| 			goertzel_sample(s->td.dtmf.col_out + 1, amp[j]);
 | |
| 			goertzel_sample(s->td.dtmf.row_out + 2, amp[j]);
 | |
| 			goertzel_sample(s->td.dtmf.col_out + 2, amp[j]);
 | |
| 			goertzel_sample(s->td.dtmf.row_out + 3, amp[j]);
 | |
| 			goertzel_sample(s->td.dtmf.col_out + 3, amp[j]);
 | |
| 		}
 | |
| 		s->td.dtmf.current_sample += (limit - sample);
 | |
| 		if (s->td.dtmf.current_sample < DTMF_GSIZE) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* We are at the end of a DTMF detection block */
 | |
| 		/* Find the peak row and the peak column */
 | |
| 		row_energy[0] = goertzel_result (&s->td.dtmf.row_out[0]);
 | |
| 		col_energy[0] = goertzel_result (&s->td.dtmf.col_out[0]);
 | |
| 
 | |
| 		for (best_row = best_col = 0, i = 1;  i < 4;  i++) {
 | |
| 			row_energy[i] = goertzel_result (&s->td.dtmf.row_out[i]);
 | |
| 			if (row_energy[i] > row_energy[best_row]) {
 | |
| 				best_row = i;
 | |
| 			}
 | |
| 			col_energy[i] = goertzel_result (&s->td.dtmf.col_out[i]);
 | |
| 			if (col_energy[i] > col_energy[best_col]) {
 | |
| 				best_col = i;
 | |
| 			}
 | |
| 		}
 | |
| 		hit = 0;
 | |
| 		/* Basic signal level test and the twist test */
 | |
| 		if (row_energy[best_row] >= DTMF_THRESHOLD && 
 | |
| 		    col_energy[best_col] >= DTMF_THRESHOLD &&
 | |
| 		    col_energy[best_col] < row_energy[best_row] * DTMF_REVERSE_TWIST &&
 | |
| 		    col_energy[best_col] * DTMF_NORMAL_TWIST > row_energy[best_row]) {
 | |
| 			/* Relative peak test */
 | |
| 			for (i = 0;  i < 4;  i++) {
 | |
| 				if ((i != best_col &&
 | |
| 				    col_energy[i] * DTMF_RELATIVE_PEAK_COL > col_energy[best_col]) ||
 | |
| 				    (i != best_row 
 | |
| 				     && row_energy[i] * DTMF_RELATIVE_PEAK_ROW > row_energy[best_row])) {
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			/* ... and fraction of total energy test */
 | |
| 			if (i >= 4 &&
 | |
| 			    (row_energy[best_row] + col_energy[best_col]) > DTMF_TO_TOTAL_ENERGY * s->td.dtmf.energy) {
 | |
| 				/* Got a hit */
 | |
| 				hit = dtmf_positions[(best_row << 2) + best_col];
 | |
| 			}
 | |
| 		} 
 | |
| 
 | |
| 		if (s->td.dtmf.current_hit) {
 | |
| 			/* We are in the middle of a digit already */
 | |
| 			if (hit != s->td.dtmf.current_hit) {
 | |
| 				s->td.dtmf.misses++;
 | |
| 				if (s->td.dtmf.misses == s->td.dtmf.misses_to_end) {
 | |
| 					/* There were enough misses to consider digit ended */
 | |
| 					s->td.dtmf.current_hit = 0;
 | |
| 				}
 | |
| 			} else {
 | |
| 				s->td.dtmf.misses = 0;
 | |
| 				/* Current hit was same as last, so increment digit duration (of last digit) */
 | |
| 				s->digitlen[s->current_digits - 1] += DTMF_GSIZE;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Look for a start of a new digit no matter if we are already in the middle of some
 | |
| 		   digit or not. This is because hits_to_begin may be smaller than misses_to_end
 | |
| 		   and we may find begin of new digit before we consider last one ended. */
 | |
| 		if (hit) {
 | |
| 			if (hit == s->td.dtmf.lasthit) {
 | |
| 				s->td.dtmf.hits++;
 | |
| 			} else {
 | |
| 				s->td.dtmf.hits = 1;
 | |
| 			}
 | |
| 
 | |
| 			if (s->td.dtmf.hits == s->td.dtmf.hits_to_begin && hit != s->td.dtmf.current_hit) {
 | |
| 				store_digit(s, hit);
 | |
| 				s->td.dtmf.current_hit = hit;
 | |
| 				s->td.dtmf.misses = 0;
 | |
| 			}
 | |
| 		} else {
 | |
| 			s->td.dtmf.hits = 0;
 | |
| 		}
 | |
| 
 | |
| 		s->td.dtmf.lasthit = hit;
 | |
| 
 | |
| 		/* If we had a hit in this block, include it into mute fragment */
 | |
| 		if (squelch && hit) {
 | |
| 			if (mute.end < sample - DTMF_GSIZE) {
 | |
| 				/* There is a gap between fragments */
 | |
| 				mute_fragment(dsp, &mute);
 | |
| 				mute.start = (sample > DTMF_GSIZE) ? (sample - DTMF_GSIZE) : 0;
 | |
| 			}
 | |
| 			mute.end = limit + DTMF_GSIZE;
 | |
| 		}
 | |
| 
 | |
| 		/* Reinitialise the detector for the next block */
 | |
| 		for (i = 0; i < 4; i++) {
 | |
| 			goertzel_reset(&s->td.dtmf.row_out[i]);
 | |
| 			goertzel_reset(&s->td.dtmf.col_out[i]);
 | |
| 		}
 | |
| 		s->td.dtmf.energy = 0.0;
 | |
| 		s->td.dtmf.current_sample = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (squelch && mute.end) {
 | |
| 		if (mute.end > samples) {
 | |
| 			s->td.dtmf.mute_samples = mute.end - samples;
 | |
| 			mute.end = samples;
 | |
| 		}
 | |
| 		mute_fragment(dsp, &mute);
 | |
| 	}
 | |
| 
 | |
| 	return (s->td.dtmf.current_hit);	/* return the debounced hit */
 | |
| }
 | |
| 
 | |
| static int mf_detect(struct ast_dsp *dsp, digit_detect_state_t *s, int16_t amp[],
 | |
|                  int samples, int squelch, int relax)
 | |
| {
 | |
| 	float energy[6];
 | |
| 	int best;
 | |
| 	int second_best;
 | |
| 	int i;
 | |
| 	int j;
 | |
| 	int sample;
 | |
| 	int hit;
 | |
| 	int limit;
 | |
| 	fragment_t mute = {0, 0};
 | |
| 
 | |
| 	if (squelch && s->td.mf.mute_samples > 0) {
 | |
| 		mute.end = (s->td.mf.mute_samples < samples) ? s->td.mf.mute_samples : samples;
 | |
| 		s->td.mf.mute_samples -= mute.end;
 | |
| 	}
 | |
| 
 | |
| 	hit = 0;
 | |
| 	for (sample = 0;  sample < samples;  sample = limit) {
 | |
| 		/* 80 is optimised to meet the MF specs. */
 | |
| 		/* XXX So then why is MF_GSIZE defined as 120? */
 | |
| 		if ((samples - sample) >= (MF_GSIZE - s->td.mf.current_sample)) {
 | |
| 			limit = sample + (MF_GSIZE - s->td.mf.current_sample);
 | |
| 		} else {
 | |
| 			limit = samples;
 | |
| 		}
 | |
| 		/* The following unrolled loop takes only 35% (rough estimate) of the 
 | |
| 		   time of a rolled loop on the machine on which it was developed */
 | |
| 		for (j = sample;  j < limit;  j++) {
 | |
| 			/* With GCC 2.95, the following unrolled code seems to take about 35%
 | |
| 			   (rough estimate) as long as a neat little 0-3 loop */
 | |
| 			goertzel_sample(s->td.mf.tone_out, amp[j]);
 | |
| 			goertzel_sample(s->td.mf.tone_out + 1, amp[j]);
 | |
| 			goertzel_sample(s->td.mf.tone_out + 2, amp[j]);
 | |
| 			goertzel_sample(s->td.mf.tone_out + 3, amp[j]);
 | |
| 			goertzel_sample(s->td.mf.tone_out + 4, amp[j]);
 | |
| 			goertzel_sample(s->td.mf.tone_out + 5, amp[j]);
 | |
| 		}
 | |
| 		s->td.mf.current_sample += (limit - sample);
 | |
| 		if (s->td.mf.current_sample < MF_GSIZE) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* We're at the end of an MF detection block.  */
 | |
| 		/* Find the two highest energies. The spec says to look for
 | |
| 		   two tones and two tones only. Taking this literally -ie
 | |
| 		   only two tones pass the minimum threshold - doesn't work
 | |
| 		   well. The sinc function mess, due to rectangular windowing
 | |
| 		   ensure that! Find the two highest energies and ensure they
 | |
| 		   are considerably stronger than any of the others. */
 | |
| 		energy[0] = goertzel_result(&s->td.mf.tone_out[0]);
 | |
| 		energy[1] = goertzel_result(&s->td.mf.tone_out[1]);
 | |
| 		if (energy[0] > energy[1]) {
 | |
| 			best = 0;
 | |
| 			second_best = 1;
 | |
| 		} else {
 | |
| 			best = 1;
 | |
| 			second_best = 0;
 | |
| 		}
 | |
| 		/*endif*/
 | |
| 		for (i = 2; i < 6; i++) {
 | |
| 			energy[i] = goertzel_result(&s->td.mf.tone_out[i]);
 | |
| 			if (energy[i] >= energy[best]) {
 | |
| 				second_best = best;
 | |
| 				best = i;
 | |
| 			} else if (energy[i] >= energy[second_best]) {
 | |
| 				second_best = i;
 | |
| 			}
 | |
| 		}
 | |
| 		/* Basic signal level and twist tests */
 | |
| 		hit = 0;
 | |
| 		if (energy[best] >= BELL_MF_THRESHOLD && energy[second_best] >= BELL_MF_THRESHOLD
 | |
| 	            && energy[best] < energy[second_best]*BELL_MF_TWIST
 | |
| 	            && energy[best] * BELL_MF_TWIST > energy[second_best]) {
 | |
| 			/* Relative peak test */
 | |
| 			hit = -1;
 | |
| 			for (i = 0; i < 6; i++) {
 | |
| 				if (i != best && i != second_best) {
 | |
| 					if (energy[i]*BELL_MF_RELATIVE_PEAK >= energy[second_best]) {
 | |
| 						/* The best two are not clearly the best */
 | |
| 						hit = 0;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		if (hit) {
 | |
| 			/* Get the values into ascending order */
 | |
| 			if (second_best < best) {
 | |
| 				i = best;
 | |
| 				best = second_best;
 | |
| 				second_best = i;
 | |
| 			}
 | |
| 			best = best * 5 + second_best - 1;
 | |
| 			hit = bell_mf_positions[best];
 | |
| 			/* Look for two successive similar results */
 | |
| 			/* The logic in the next test is:
 | |
| 			   For KP we need 4 successive identical clean detects, with
 | |
| 			   two blocks of something different preceeding it. For anything
 | |
| 			   else we need two successive identical clean detects, with
 | |
| 			   two blocks of something different preceeding it. */
 | |
| 			if (hit == s->td.mf.hits[4] && hit == s->td.mf.hits[3] &&
 | |
| 			   ((hit != '*' && hit != s->td.mf.hits[2] && hit != s->td.mf.hits[1])||
 | |
| 			    (hit == '*' && hit == s->td.mf.hits[2] && hit != s->td.mf.hits[1] && 
 | |
| 			    hit != s->td.mf.hits[0]))) {
 | |
| 				store_digit(s, hit);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		if (hit != s->td.mf.hits[4] && hit != s->td.mf.hits[3]) {
 | |
| 			/* Two successive block without a hit terminate current digit */
 | |
| 			s->td.mf.current_hit = 0;
 | |
| 		}
 | |
| 
 | |
| 		s->td.mf.hits[0] = s->td.mf.hits[1];
 | |
| 		s->td.mf.hits[1] = s->td.mf.hits[2];
 | |
| 		s->td.mf.hits[2] = s->td.mf.hits[3];
 | |
| 		s->td.mf.hits[3] = s->td.mf.hits[4];
 | |
| 		s->td.mf.hits[4] = hit;
 | |
| 
 | |
| 		/* If we had a hit in this block, include it into mute fragment */
 | |
| 		if (squelch && hit) {
 | |
| 			if (mute.end < sample - MF_GSIZE) {
 | |
| 				/* There is a gap between fragments */
 | |
| 				mute_fragment(dsp, &mute);
 | |
| 				mute.start = (sample > MF_GSIZE) ? (sample - MF_GSIZE) : 0;
 | |
| 			}
 | |
| 			mute.end = limit + DTMF_GSIZE;
 | |
| 		}
 | |
| 
 | |
| 		/* Reinitialise the detector for the next block */
 | |
| 		for (i = 0;  i < 6;  i++)
 | |
| 			goertzel_reset(&s->td.mf.tone_out[i]);
 | |
| 		s->td.mf.current_sample = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (squelch && mute.end) {
 | |
| 		if (mute.end > samples) {
 | |
| 			s->td.mf.mute_samples = mute.end - samples;
 | |
| 			mute.end = samples;
 | |
| 		}
 | |
| 		mute_fragment(dsp, &mute);
 | |
| 	}
 | |
| 
 | |
| 	return (s->td.mf.current_hit); /* return the debounced hit */
 | |
| }
 | |
| 
 | |
| static inline int pair_there(float p1, float p2, float i1, float i2, float e)
 | |
| {
 | |
| 	/* See if p1 and p2 are there, relative to i1 and i2 and total energy */
 | |
| 	/* Make sure absolute levels are high enough */
 | |
| 	if ((p1 < TONE_MIN_THRESH) || (p2 < TONE_MIN_THRESH)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* Amplify ignored stuff */
 | |
| 	i2 *= TONE_THRESH;
 | |
| 	i1 *= TONE_THRESH;
 | |
| 	e *= TONE_THRESH;
 | |
| 	/* Check first tone */
 | |
| 	if ((p1 < i1) || (p1 < i2) || (p1 < e)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* And second */
 | |
| 	if ((p2 < i1) || (p2 < i2) || (p2 < e)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* Guess it's there... */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int __ast_dsp_call_progress(struct ast_dsp *dsp, short *s, int len)
 | |
| {
 | |
| 	int x;
 | |
| 	int y;
 | |
| 	int pass;
 | |
| 	int newstate = DSP_TONE_STATE_SILENCE;
 | |
| 	int res = 0;
 | |
| 	while (len) {
 | |
| 		/* Take the lesser of the number of samples we need and what we have */
 | |
| 		pass = len;
 | |
| 		if (pass > dsp->gsamp_size - dsp->gsamps) {
 | |
| 			pass = dsp->gsamp_size - dsp->gsamps;
 | |
| 		}
 | |
| 		for (x = 0; x < pass; x++) {
 | |
| 			for (y = 0; y < dsp->freqcount; y++) {
 | |
| 				goertzel_sample(&dsp->freqs[y], s[x]);
 | |
| 			}
 | |
| 			dsp->genergy += s[x] * s[x];
 | |
| 		}
 | |
| 		s += pass;
 | |
| 		dsp->gsamps += pass;
 | |
| 		len -= pass;
 | |
| 		if (dsp->gsamps == dsp->gsamp_size) {
 | |
| 			float hz[7];
 | |
| 			for (y = 0; y < 7; y++) {
 | |
| 				hz[y] = goertzel_result(&dsp->freqs[y]);
 | |
| 			}
 | |
| 			switch (dsp->progmode) {
 | |
| 			case PROG_MODE_NA:
 | |
| 				if (pair_there(hz[HZ_480], hz[HZ_620], hz[HZ_350], hz[HZ_440], dsp->genergy)) {
 | |
| 					newstate = DSP_TONE_STATE_BUSY;
 | |
| 				} else if (pair_there(hz[HZ_440], hz[HZ_480], hz[HZ_350], hz[HZ_620], dsp->genergy)) {
 | |
| 					newstate = DSP_TONE_STATE_RINGING;
 | |
| 				} else if (pair_there(hz[HZ_350], hz[HZ_440], hz[HZ_480], hz[HZ_620], dsp->genergy)) {
 | |
| 					newstate = DSP_TONE_STATE_DIALTONE;
 | |
| 				} else if (hz[HZ_950] > TONE_MIN_THRESH * TONE_THRESH) {
 | |
| 					newstate = DSP_TONE_STATE_SPECIAL1;
 | |
| 				} else if (hz[HZ_1400] > TONE_MIN_THRESH * TONE_THRESH) {
 | |
| 					/* End of SPECIAL1 or middle of SPECIAL2 */
 | |
| 					if (dsp->tstate == DSP_TONE_STATE_SPECIAL1 || dsp->tstate == DSP_TONE_STATE_SPECIAL2) {
 | |
| 						newstate = DSP_TONE_STATE_SPECIAL2;
 | |
| 					}
 | |
| 				} else if (hz[HZ_1800] > TONE_MIN_THRESH * TONE_THRESH) {
 | |
| 					/* End of SPECIAL2 or middle of SPECIAL3 */
 | |
| 					if (dsp->tstate == DSP_TONE_STATE_SPECIAL2 || dsp->tstate == DSP_TONE_STATE_SPECIAL3) {
 | |
| 						newstate = DSP_TONE_STATE_SPECIAL3;
 | |
| 					}
 | |
| 				} else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
 | |
| 					newstate = DSP_TONE_STATE_TALKING;
 | |
| 				} else {
 | |
| 					newstate = DSP_TONE_STATE_SILENCE;
 | |
| 				}
 | |
| 				break;
 | |
| 			case PROG_MODE_CR:
 | |
| 				if (hz[HZ_425] > TONE_MIN_THRESH * TONE_THRESH) {
 | |
| 					newstate = DSP_TONE_STATE_RINGING;
 | |
| 				} else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
 | |
| 					newstate = DSP_TONE_STATE_TALKING;
 | |
| 				} else {
 | |
| 					newstate = DSP_TONE_STATE_SILENCE;
 | |
| 				}
 | |
| 				break;
 | |
| 			case PROG_MODE_UK:
 | |
| 				if (hz[HZ_400UK] > TONE_MIN_THRESH * TONE_THRESH) {
 | |
| 					newstate = DSP_TONE_STATE_HUNGUP;
 | |
| 				} else if (pair_there(hz[HZ_350UK], hz[HZ_440UK], hz[HZ_400UK], hz[HZ_400UK], dsp->genergy)) {
 | |
| 					newstate = DSP_TONE_STATE_DIALTONE;
 | |
| 				}
 | |
| 				break;
 | |
| 			default:
 | |
| 				ast_log(LOG_WARNING, "Can't process in unknown prog mode '%d'\n", dsp->progmode);
 | |
| 			}
 | |
| 			if (newstate == dsp->tstate) {
 | |
| 				dsp->tcount++;
 | |
| 				if (dsp->ringtimeout) {
 | |
| 					dsp->ringtimeout++;
 | |
| 				}
 | |
| 				switch (dsp->tstate) {
 | |
| 				case DSP_TONE_STATE_RINGING:
 | |
| 					if ((dsp->features & DSP_PROGRESS_RINGING) &&
 | |
| 					    (dsp->tcount == THRESH_RING)) {
 | |
| 						res = AST_CONTROL_RINGING;
 | |
| 						dsp->ringtimeout = 1;
 | |
| 					}
 | |
| 					break;
 | |
| 				case DSP_TONE_STATE_BUSY:
 | |
| 					if ((dsp->features & DSP_PROGRESS_BUSY) &&
 | |
| 					    (dsp->tcount == THRESH_BUSY)) {
 | |
| 						res = AST_CONTROL_BUSY;
 | |
| 						dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
 | |
| 					}
 | |
| 					break;
 | |
| 				case DSP_TONE_STATE_TALKING:
 | |
| 					if ((dsp->features & DSP_PROGRESS_TALK) &&
 | |
| 					    (dsp->tcount == THRESH_TALK)) {
 | |
| 						res = AST_CONTROL_ANSWER;
 | |
| 						dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
 | |
| 					}
 | |
| 					break;
 | |
| 				case DSP_TONE_STATE_SPECIAL3:
 | |
| 					if ((dsp->features & DSP_PROGRESS_CONGESTION) &&
 | |
| 					    (dsp->tcount == THRESH_CONGESTION)) {
 | |
| 						res = AST_CONTROL_CONGESTION;
 | |
| 						dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
 | |
| 					}
 | |
| 					break;
 | |
| 				case DSP_TONE_STATE_HUNGUP:
 | |
| 					if ((dsp->features & DSP_FEATURE_CALL_PROGRESS) &&
 | |
| 					    (dsp->tcount == THRESH_HANGUP)) {
 | |
| 						res = AST_CONTROL_HANGUP;
 | |
| 						dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
 | |
| 					}
 | |
| 					break;
 | |
| 				}
 | |
| 				if (dsp->ringtimeout == THRESH_RING2ANSWER) {
 | |
| 					ast_debug(1, "Consider call as answered because of timeout after last ring\n");
 | |
| 					res = AST_CONTROL_ANSWER;
 | |
| 					dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
 | |
| 				}
 | |
| 			} else {
 | |
| 				ast_debug(5, "Stop state %d with duration %d\n", dsp->tstate, dsp->tcount);
 | |
| 				ast_debug(5, "Start state %d\n", newstate);
 | |
| 				dsp->tstate = newstate;
 | |
| 				dsp->tcount = 1;
 | |
| 			}
 | |
| 
 | |
| 			/* Reset goertzel */
 | |
| 			for (x = 0; x < 7; x++) {
 | |
| 				dsp->freqs[x].v2 = dsp->freqs[x].v3 = 0.0;
 | |
| 			}
 | |
| 			dsp->gsamps = 0;
 | |
| 			dsp->genergy = 0.0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| int ast_dsp_call_progress(struct ast_dsp *dsp, struct ast_frame *inf)
 | |
| {
 | |
| 	if (inf->frametype != AST_FRAME_VOICE) {
 | |
| 		ast_log(LOG_WARNING, "Can't check call progress of non-voice frames\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (inf->subclass.codec != AST_FORMAT_SLINEAR) {
 | |
| 		ast_log(LOG_WARNING, "Can only check call progress in signed-linear frames\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return __ast_dsp_call_progress(dsp, inf->data.ptr, inf->datalen / 2);
 | |
| }
 | |
| 
 | |
| static int __ast_dsp_silence_noise(struct ast_dsp *dsp, short *s, int len, int *totalsilence, int *totalnoise)
 | |
| {
 | |
| 	int accum;
 | |
| 	int x;
 | |
| 	int res = 0;
 | |
| 
 | |
| 	if (!len) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 	accum = 0;
 | |
| 	for (x = 0; x < len; x++) {
 | |
| 		accum += abs(s[x]);
 | |
| 	}
 | |
| 	accum /= len;
 | |
| 	if (accum < dsp->threshold) {
 | |
| 		/* Silent */
 | |
| 		dsp->totalsilence += len / 8;
 | |
| 		if (dsp->totalnoise) {
 | |
| 			/* Move and save history */
 | |
| 			memmove(dsp->historicnoise + DSP_HISTORY - dsp->busycount, dsp->historicnoise + DSP_HISTORY - dsp->busycount + 1, dsp->busycount * sizeof(dsp->historicnoise[0]));
 | |
| 			dsp->historicnoise[DSP_HISTORY - 1] = dsp->totalnoise;
 | |
| /* we don't want to check for busydetect that frequently */
 | |
| #if 0
 | |
| 			dsp->busymaybe = 1;
 | |
| #endif
 | |
| 		}
 | |
| 		dsp->totalnoise = 0;
 | |
| 		res = 1;
 | |
| 	} else {
 | |
| 		/* Not silent */
 | |
| 		dsp->totalnoise += len / 8;
 | |
| 		if (dsp->totalsilence) {
 | |
| 			int silence1 = dsp->historicsilence[DSP_HISTORY - 1];
 | |
| 			int silence2 = dsp->historicsilence[DSP_HISTORY - 2];
 | |
| 			/* Move and save history */
 | |
| 			memmove(dsp->historicsilence + DSP_HISTORY - dsp->busycount, dsp->historicsilence + DSP_HISTORY - dsp->busycount + 1, dsp->busycount * sizeof(dsp->historicsilence[0]));
 | |
| 			dsp->historicsilence[DSP_HISTORY - 1] = dsp->totalsilence;
 | |
| 			/* check if the previous sample differs only by BUSY_PERCENT from the one before it */
 | |
| 			if (silence1 < silence2) {
 | |
| 				if (silence1 + silence1 * BUSY_PERCENT / 100 >= silence2) {
 | |
| 					dsp->busymaybe = 1;
 | |
| 				} else {
 | |
| 					dsp->busymaybe = 0;
 | |
| 				}
 | |
| 			} else {
 | |
| 				if (silence1 - silence1 * BUSY_PERCENT / 100 <= silence2) {
 | |
| 					dsp->busymaybe = 1;
 | |
| 				} else {
 | |
| 					dsp->busymaybe = 0;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		dsp->totalsilence = 0;
 | |
| 	}
 | |
| 	if (totalsilence) {
 | |
| 		*totalsilence = dsp->totalsilence;
 | |
| 	}
 | |
| 	if (totalnoise) {
 | |
| 		*totalnoise = dsp->totalnoise;
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| int ast_dsp_busydetect(struct ast_dsp *dsp)
 | |
| {
 | |
| 	int res = 0, x;
 | |
| #ifndef BUSYDETECT_TONEONLY
 | |
| 	int avgsilence = 0, hitsilence = 0;
 | |
| #endif
 | |
| 	int avgtone = 0, hittone = 0;
 | |
| 	if (!dsp->busymaybe) {
 | |
| 		return res;
 | |
| 	}
 | |
| 	for (x = DSP_HISTORY - dsp->busycount; x < DSP_HISTORY; x++) {
 | |
| #ifndef BUSYDETECT_TONEONLY
 | |
| 		avgsilence += dsp->historicsilence[x];
 | |
| #endif
 | |
| 		avgtone += dsp->historicnoise[x];
 | |
| 	}
 | |
| #ifndef BUSYDETECT_TONEONLY
 | |
| 	avgsilence /= dsp->busycount;
 | |
| #endif
 | |
| 	avgtone /= dsp->busycount;
 | |
| 	for (x = DSP_HISTORY - dsp->busycount; x < DSP_HISTORY; x++) {
 | |
| #ifndef BUSYDETECT_TONEONLY
 | |
| 		if (avgsilence > dsp->historicsilence[x]) {
 | |
| 			if (avgsilence - (avgsilence * BUSY_PERCENT / 100) <= dsp->historicsilence[x]) {
 | |
| 				hitsilence++;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (avgsilence + (avgsilence * BUSY_PERCENT / 100) >= dsp->historicsilence[x]) {
 | |
| 				hitsilence++;
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 		if (avgtone > dsp->historicnoise[x]) {
 | |
| 			if (avgtone - (avgtone * BUSY_PERCENT / 100) <= dsp->historicnoise[x]) {
 | |
| 				hittone++;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (avgtone + (avgtone * BUSY_PERCENT / 100) >= dsp->historicnoise[x]) {
 | |
| 				hittone++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| #ifndef BUSYDETECT_TONEONLY
 | |
| 	if ((hittone >= dsp->busycount - 1) && (hitsilence >= dsp->busycount - 1) && 
 | |
| 	    (avgtone >= BUSY_MIN && avgtone <= BUSY_MAX) && 
 | |
| 	    (avgsilence >= BUSY_MIN && avgsilence <= BUSY_MAX)) {
 | |
| #else
 | |
| 	if ((hittone >= dsp->busycount - 1) && (avgtone >= BUSY_MIN && avgtone <= BUSY_MAX)) {
 | |
| #endif
 | |
| #ifdef BUSYDETECT_COMPARE_TONE_AND_SILENCE
 | |
| 		if (avgtone > avgsilence) {
 | |
| 			if (avgtone - avgtone*BUSY_PERCENT/100 <= avgsilence) {
 | |
| 				res = 1;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (avgtone + avgtone*BUSY_PERCENT/100 >= avgsilence) {
 | |
| 				res = 1;
 | |
| 			}
 | |
| 		}
 | |
| #else
 | |
| 		res = 1;
 | |
| #endif
 | |
| 	}
 | |
| 	/* If we know the expected busy tone length, check we are in the range */
 | |
| 	if (res && (dsp->busy_tonelength > 0)) {
 | |
| 		if (abs(avgtone - dsp->busy_tonelength) > MAX(dsp->busy_tonelength*BUSY_PAT_PERCENT/100, 20)) {
 | |
| #ifdef BUSYDETECT_DEBUG
 | |
| 			ast_debug(5, "busy detector: avgtone of %d not close enough to desired %d\n",
 | |
| 				avgtone, dsp->busy_tonelength);
 | |
| #endif
 | |
| 			res = 0;
 | |
| 		}
 | |
| 	}
 | |
| #ifndef BUSYDETECT_TONEONLY
 | |
| 	/* If we know the expected busy tone silent-period length, check we are in the range */
 | |
| 	if (res && (dsp->busy_quietlength > 0)) {
 | |
| 		if (abs(avgsilence - dsp->busy_quietlength) > MAX(dsp->busy_quietlength*BUSY_PAT_PERCENT/100, 20)) {
 | |
| #ifdef BUSYDETECT_DEBUG
 | |
| 		ast_debug(5, "busy detector: avgsilence of %d not close enough to desired %d\n",
 | |
| 			avgsilence, dsp->busy_quietlength);
 | |
| #endif
 | |
| 			res = 0;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| #if !defined(BUSYDETECT_TONEONLY) && defined(BUSYDETECT_DEBUG)
 | |
| 	if (res) {
 | |
| 		ast_debug(5, "ast_dsp_busydetect detected busy, avgtone: %d, avgsilence %d\n", avgtone, avgsilence);
 | |
| 	} else {
 | |
| 		ast_debug(5, "busy detector: FAILED with avgtone: %d, avgsilence %d\n", avgtone, avgsilence);
 | |
| 	}
 | |
| #endif
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| int ast_dsp_silence(struct ast_dsp *dsp, struct ast_frame *f, int *totalsilence)
 | |
| {
 | |
| 	short *s;
 | |
| 	int len;
 | |
| 	
 | |
| 	if (f->frametype != AST_FRAME_VOICE) {
 | |
| 		ast_log(LOG_WARNING, "Can't calculate silence on a non-voice frame\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (f->subclass.codec != AST_FORMAT_SLINEAR) {
 | |
| 		ast_log(LOG_WARNING, "Can only calculate silence on signed-linear frames :(\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	s = f->data.ptr;
 | |
| 	len = f->datalen/2;
 | |
| 	return __ast_dsp_silence_noise(dsp, s, len, totalsilence, NULL);
 | |
| }
 | |
| 
 | |
| int ast_dsp_noise(struct ast_dsp *dsp, struct ast_frame *f, int *totalnoise)
 | |
| {
 | |
|        short *s;
 | |
|        int len;
 | |
| 
 | |
|        if (f->frametype != AST_FRAME_VOICE) {
 | |
|                ast_log(LOG_WARNING, "Can't calculate noise on a non-voice frame\n");
 | |
|                return 0;
 | |
|        }
 | |
|        if (f->subclass.codec != AST_FORMAT_SLINEAR) {
 | |
|                ast_log(LOG_WARNING, "Can only calculate noise on signed-linear frames :(\n");
 | |
|                return 0;
 | |
|        }
 | |
|        s = f->data.ptr;
 | |
|        len = f->datalen/2;
 | |
|        return __ast_dsp_silence_noise(dsp, s, len, NULL, totalnoise);
 | |
| }
 | |
| 
 | |
| 
 | |
| struct ast_frame *ast_dsp_process(struct ast_channel *chan, struct ast_dsp *dsp, struct ast_frame *af)
 | |
| {
 | |
| 	int silence;
 | |
| 	int res;
 | |
| 	int digit = 0, fax_digit = 0;
 | |
| 	int x;
 | |
| 	short *shortdata;
 | |
| 	unsigned char *odata;
 | |
| 	int len;
 | |
| 	struct ast_frame *outf = NULL;
 | |
| 
 | |
| 	if (!af) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (af->frametype != AST_FRAME_VOICE) {
 | |
| 		return af;
 | |
| 	}
 | |
| 
 | |
| 	odata = af->data.ptr;
 | |
| 	len = af->datalen;
 | |
| 	/* Make sure we have short data */
 | |
| 	switch (af->subclass.codec) {
 | |
| 	case AST_FORMAT_SLINEAR:
 | |
| 		shortdata = af->data.ptr;
 | |
| 		len = af->datalen / 2;
 | |
| 		break;
 | |
| 	case AST_FORMAT_ULAW:
 | |
| 	case AST_FORMAT_TESTLAW:
 | |
| 		shortdata = alloca(af->datalen * 2);
 | |
| 		for (x = 0;x < len; x++) {
 | |
| 			shortdata[x] = AST_MULAW(odata[x]);
 | |
| 		}
 | |
| 		break;
 | |
| 	case AST_FORMAT_ALAW:
 | |
| 		shortdata = alloca(af->datalen * 2);
 | |
| 		for (x = 0; x < len; x++) {
 | |
| 			shortdata[x] = AST_ALAW(odata[x]);
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		/*Display warning only once. Otherwise you would get hundreds of warnings every second */
 | |
| 		if (dsp->display_inband_dtmf_warning)
 | |
| 			ast_log(LOG_WARNING, "Inband DTMF is not supported on codec %s. Use RFC2833\n", ast_getformatname(af->subclass.codec));
 | |
| 		dsp->display_inband_dtmf_warning = 0;
 | |
| 		return af;
 | |
| 	}
 | |
| 
 | |
| 	/* Initially we do not want to mute anything */
 | |
| 	dsp->mute_fragments = 0;
 | |
| 
 | |
| 	/* Need to run the silence detection stuff for silence suppression and busy detection */
 | |
| 	if ((dsp->features & DSP_FEATURE_SILENCE_SUPPRESS) || (dsp->features & DSP_FEATURE_BUSY_DETECT)) {
 | |
| 		res = __ast_dsp_silence_noise(dsp, shortdata, len, &silence, NULL);
 | |
| 	}
 | |
| 
 | |
| 	if ((dsp->features & DSP_FEATURE_SILENCE_SUPPRESS) && silence) {
 | |
| 		memset(&dsp->f, 0, sizeof(dsp->f));
 | |
| 		dsp->f.frametype = AST_FRAME_NULL;
 | |
| 		ast_frfree(af);
 | |
| 		return ast_frisolate(&dsp->f);
 | |
| 	}
 | |
| 	if ((dsp->features & DSP_FEATURE_BUSY_DETECT) && ast_dsp_busydetect(dsp)) {
 | |
| 		chan->_softhangup |= AST_SOFTHANGUP_DEV;
 | |
| 		memset(&dsp->f, 0, sizeof(dsp->f));
 | |
| 		dsp->f.frametype = AST_FRAME_CONTROL;
 | |
| 		dsp->f.subclass.integer = AST_CONTROL_BUSY;
 | |
| 		ast_frfree(af);
 | |
| 		ast_debug(1, "Requesting Hangup because the busy tone was detected on channel %s\n", chan->name);
 | |
| 		return ast_frisolate(&dsp->f);
 | |
| 	}
 | |
| 
 | |
| 	if ((dsp->features & DSP_FEATURE_FAX_DETECT)) {
 | |
| 		if ((dsp->faxmode & DSP_FAXMODE_DETECT_CNG) && tone_detect(dsp, &dsp->cng_tone_state, shortdata, len)) {
 | |
| 			fax_digit = 'f';
 | |
| 		}
 | |
| 
 | |
| 		if ((dsp->faxmode & DSP_FAXMODE_DETECT_CED) && tone_detect(dsp, &dsp->ced_tone_state, shortdata, len)) {
 | |
| 			fax_digit = 'e';
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (dsp->features & (DSP_FEATURE_DIGIT_DETECT | DSP_FEATURE_BUSY_DETECT)) {
 | |
| 		if (dsp->digitmode & DSP_DIGITMODE_MF)
 | |
| 			digit = mf_detect(dsp, &dsp->digit_state, shortdata, len, (dsp->digitmode & DSP_DIGITMODE_NOQUELCH) == 0, (dsp->digitmode & DSP_DIGITMODE_RELAXDTMF));
 | |
| 		else
 | |
| 			digit = dtmf_detect(dsp, &dsp->digit_state, shortdata, len, (dsp->digitmode & DSP_DIGITMODE_NOQUELCH) == 0, (dsp->digitmode & DSP_DIGITMODE_RELAXDTMF));
 | |
| 
 | |
| 		if (dsp->digit_state.current_digits) {
 | |
| 			int event = 0, event_len = 0;
 | |
| 			char event_digit = 0;
 | |
| 
 | |
| 			if (!dsp->dtmf_began) {
 | |
| 				/* We have not reported DTMF_BEGIN for anything yet */
 | |
| 
 | |
| 				if (dsp->features & DSP_FEATURE_DIGIT_DETECT) {
 | |
| 					event = AST_FRAME_DTMF_BEGIN;
 | |
| 					event_digit = dsp->digit_state.digits[0];
 | |
| 				}
 | |
| 				dsp->dtmf_began = 1;
 | |
| 
 | |
| 			} else if (dsp->digit_state.current_digits > 1 || digit != dsp->digit_state.digits[0]) {
 | |
| 				/* Digit changed. This means digit we have reported with DTMF_BEGIN ended */
 | |
| 				if (dsp->features & DSP_FEATURE_DIGIT_DETECT) {
 | |
| 					event = AST_FRAME_DTMF_END;
 | |
| 					event_digit = dsp->digit_state.digits[0];
 | |
| 					event_len = dsp->digit_state.digitlen[0] * 1000 / SAMPLE_RATE;
 | |
| 				}
 | |
| 				memmove(&dsp->digit_state.digits[0], &dsp->digit_state.digits[1], dsp->digit_state.current_digits);
 | |
| 				memmove(&dsp->digit_state.digitlen[0], &dsp->digit_state.digitlen[1], dsp->digit_state.current_digits * sizeof(dsp->digit_state.digitlen[0]));
 | |
| 				dsp->digit_state.current_digits--;
 | |
| 				dsp->dtmf_began = 0;
 | |
| 
 | |
| 				if (dsp->features & DSP_FEATURE_BUSY_DETECT) {
 | |
| 					/* Reset Busy Detector as we have some confirmed activity */ 
 | |
| 					memset(dsp->historicsilence, 0, sizeof(dsp->historicsilence));
 | |
| 					memset(dsp->historicnoise, 0, sizeof(dsp->historicnoise));
 | |
| 					ast_debug(1, "DTMF Detected - Reset busydetector\n");
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (event) {
 | |
| 				memset(&dsp->f, 0, sizeof(dsp->f));
 | |
| 				dsp->f.frametype = event;
 | |
| 				dsp->f.subclass.integer = event_digit;
 | |
| 				dsp->f.len = event_len;
 | |
| 				outf = &dsp->f;
 | |
| 				goto done;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (fax_digit) {
 | |
| 		/* Fax was detected - digit is either 'f' or 'e' */
 | |
| 
 | |
| 		memset(&dsp->f, 0, sizeof(dsp->f));
 | |
| 		dsp->f.frametype = AST_FRAME_DTMF;
 | |
| 		dsp->f.subclass.integer = fax_digit;
 | |
| 		outf = &dsp->f;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	if ((dsp->features & DSP_FEATURE_CALL_PROGRESS)) {
 | |
| 		res = __ast_dsp_call_progress(dsp, shortdata, len);
 | |
| 		if (res) {
 | |
| 			switch (res) {
 | |
| 			case AST_CONTROL_ANSWER:
 | |
| 			case AST_CONTROL_BUSY:
 | |
| 			case AST_CONTROL_RINGING:
 | |
| 			case AST_CONTROL_CONGESTION:
 | |
| 			case AST_CONTROL_HANGUP:
 | |
| 				memset(&dsp->f, 0, sizeof(dsp->f));
 | |
| 				dsp->f.frametype = AST_FRAME_CONTROL;
 | |
| 				dsp->f.subclass.integer = res;
 | |
| 				dsp->f.src = "dsp_progress";
 | |
| 				if (chan) 
 | |
| 					ast_queue_frame(chan, &dsp->f);
 | |
| 				break;
 | |
| 			default:
 | |
| 				ast_log(LOG_WARNING, "Don't know how to represent call progress message %d\n", res);
 | |
| 			}
 | |
| 		}
 | |
| 	} else if ((dsp->features & DSP_FEATURE_WAITDIALTONE)) {
 | |
| 		res = __ast_dsp_call_progress(dsp, shortdata, len);
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	/* Mute fragment of the frame */
 | |
| 	for (x = 0; x < dsp->mute_fragments; x++) {
 | |
| 		memset(shortdata + dsp->mute_data[x].start, 0, sizeof(int16_t) * (dsp->mute_data[x].end - dsp->mute_data[x].start));
 | |
| 	}
 | |
| 
 | |
| 	switch (af->subclass.codec) {
 | |
| 	case AST_FORMAT_SLINEAR:
 | |
| 		break;
 | |
| 	case AST_FORMAT_ULAW:
 | |
| 		for (x = 0; x < len; x++) {
 | |
| 			odata[x] = AST_LIN2MU((unsigned short) shortdata[x]);
 | |
| 		}
 | |
| 		break;
 | |
| 	case AST_FORMAT_ALAW:
 | |
| 		for (x = 0; x < len; x++) {
 | |
| 			odata[x] = AST_LIN2A((unsigned short) shortdata[x]);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (outf) {
 | |
| 		if (chan) {
 | |
| 			ast_queue_frame(chan, af);
 | |
| 		}
 | |
| 		ast_frfree(af);
 | |
| 		return ast_frisolate(outf);
 | |
| 	} else {
 | |
| 		return af;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ast_dsp_prog_reset(struct ast_dsp *dsp)
 | |
| {
 | |
| 	int max = 0;
 | |
| 	int x;
 | |
| 	
 | |
| 	dsp->gsamp_size = modes[dsp->progmode].size;
 | |
| 	dsp->gsamps = 0;
 | |
| 	for (x = 0; x < ARRAY_LEN(modes[dsp->progmode].freqs); x++) {
 | |
| 		if (modes[dsp->progmode].freqs[x]) {
 | |
| 			goertzel_init(&dsp->freqs[x], (float)modes[dsp->progmode].freqs[x], dsp->gsamp_size);
 | |
| 			max = x + 1;
 | |
| 		}
 | |
| 	}
 | |
| 	dsp->freqcount = max;
 | |
| 	dsp->ringtimeout= 0;
 | |
| }
 | |
| 
 | |
| struct ast_dsp *ast_dsp_new(void)
 | |
| {
 | |
| 	struct ast_dsp *dsp;
 | |
| 	
 | |
| 	if ((dsp = ast_calloc(1, sizeof(*dsp)))) {		
 | |
| 		dsp->threshold = DEFAULT_THRESHOLD;
 | |
| 		dsp->features = DSP_FEATURE_SILENCE_SUPPRESS;
 | |
| 		dsp->busycount = DSP_HISTORY;
 | |
| 		dsp->digitmode = DSP_DIGITMODE_DTMF;
 | |
| 		dsp->faxmode = DSP_FAXMODE_DETECT_CNG;
 | |
| 		/* Initialize digit detector */
 | |
| 		ast_digit_detect_init(&dsp->digit_state, dsp->digitmode & DSP_DIGITMODE_MF);
 | |
| 		dsp->display_inband_dtmf_warning = 1;
 | |
| 		/* Initialize initial DSP progress detect parameters */
 | |
| 		ast_dsp_prog_reset(dsp);
 | |
| 		/* Initialize fax detector */
 | |
| 		ast_fax_detect_init(dsp);
 | |
| 	}
 | |
| 	return dsp;
 | |
| }
 | |
| 
 | |
| void ast_dsp_set_features(struct ast_dsp *dsp, int features)
 | |
| {
 | |
| 	dsp->features = features;
 | |
| 	if (!(features & DSP_FEATURE_DIGIT_DETECT)) {
 | |
| 		dsp->display_inband_dtmf_warning = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void ast_dsp_free(struct ast_dsp *dsp)
 | |
| {
 | |
| 	ast_free(dsp);
 | |
| }
 | |
| 
 | |
| void ast_dsp_set_threshold(struct ast_dsp *dsp, int threshold)
 | |
| {
 | |
| 	dsp->threshold = threshold;
 | |
| }
 | |
| 
 | |
| void ast_dsp_set_busy_count(struct ast_dsp *dsp, int cadences)
 | |
| {
 | |
| 	if (cadences < 4) {
 | |
| 		cadences = 4;
 | |
| 	}
 | |
| 	if (cadences > DSP_HISTORY) {
 | |
| 		cadences = DSP_HISTORY;
 | |
| 	}
 | |
| 	dsp->busycount = cadences;
 | |
| }
 | |
| 
 | |
| void ast_dsp_set_busy_pattern(struct ast_dsp *dsp, int tonelength, int quietlength)
 | |
| {
 | |
| 	dsp->busy_tonelength = tonelength;
 | |
| 	dsp->busy_quietlength = quietlength;
 | |
| 	ast_debug(1, "dsp busy pattern set to %d,%d\n", tonelength, quietlength);
 | |
| }
 | |
| 
 | |
| void ast_dsp_digitreset(struct ast_dsp *dsp)
 | |
| {
 | |
| 	int i;
 | |
| 	
 | |
| 	dsp->dtmf_began = 0;
 | |
| 	if (dsp->digitmode & DSP_DIGITMODE_MF) {
 | |
| 		mf_detect_state_t *s = &dsp->digit_state.td.mf;
 | |
| 		/* Reinitialise the detector for the next block */
 | |
| 		for (i = 0;  i < 6;  i++) {
 | |
| 			goertzel_reset(&s->tone_out[i]);
 | |
| 		}
 | |
| 		s->hits[4] = s->hits[3] = s->hits[2] = s->hits[1] = s->hits[0] = s->current_hit = 0;
 | |
| 		s->current_sample = 0;
 | |
| 	} else {
 | |
| 		dtmf_detect_state_t *s = &dsp->digit_state.td.dtmf;
 | |
| 		/* Reinitialise the detector for the next block */
 | |
| 		for (i = 0;  i < 4;  i++) {
 | |
| 			goertzel_reset(&s->row_out[i]);
 | |
| 			goertzel_reset(&s->col_out[i]);
 | |
| 		}
 | |
| 		s->lasthit = s->current_hit = 0;
 | |
| 		s->energy = 0.0;
 | |
| 		s->current_sample = 0;
 | |
| 		s->hits = 0;
 | |
| 		s->misses = 0;
 | |
| 	}
 | |
| 
 | |
| 	dsp->digit_state.digits[0] = '\0';
 | |
| 	dsp->digit_state.current_digits = 0;
 | |
| }
 | |
| 
 | |
| void ast_dsp_reset(struct ast_dsp *dsp)
 | |
| {
 | |
| 	int x;
 | |
| 	
 | |
| 	dsp->totalsilence = 0;
 | |
| 	dsp->gsamps = 0;
 | |
| 	for (x = 0; x < 4; x++) {
 | |
| 		dsp->freqs[x].v2 = dsp->freqs[x].v3 = 0.0;
 | |
| 	}
 | |
| 	memset(dsp->historicsilence, 0, sizeof(dsp->historicsilence));
 | |
| 	memset(dsp->historicnoise, 0, sizeof(dsp->historicnoise));	
 | |
| 	dsp->ringtimeout= 0;
 | |
| }
 | |
| 
 | |
| int ast_dsp_set_digitmode(struct ast_dsp *dsp, int digitmode)
 | |
| {
 | |
| 	int new;
 | |
| 	int old;
 | |
| 	
 | |
| 	old = dsp->digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
 | |
| 	new = digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
 | |
| 	if (old != new) {
 | |
| 		/* Must initialize structures if switching from MF to DTMF or vice-versa */
 | |
| 		ast_digit_detect_init(&dsp->digit_state, new & DSP_DIGITMODE_MF);
 | |
| 	}
 | |
| 	dsp->digitmode = digitmode;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ast_dsp_set_faxmode(struct ast_dsp *dsp, int faxmode)
 | |
| {
 | |
| 	if (dsp->faxmode != faxmode) {
 | |
| 		ast_fax_detect_init(dsp);
 | |
| 	}
 | |
| 	dsp->faxmode = faxmode;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ast_dsp_set_call_progress_zone(struct ast_dsp *dsp, char *zone)
 | |
| {
 | |
| 	int x;
 | |
| 	
 | |
| 	for (x = 0; x < ARRAY_LEN(aliases); x++) {
 | |
| 		if (!strcasecmp(aliases[x].name, zone)) {
 | |
| 			dsp->progmode = aliases[x].mode;
 | |
| 			ast_dsp_prog_reset(dsp);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| int ast_dsp_was_muted(struct ast_dsp *dsp)
 | |
| {
 | |
| 	return (dsp->mute_fragments > 0);
 | |
| }
 | |
| 
 | |
| int ast_dsp_get_tstate(struct ast_dsp *dsp) 
 | |
| {
 | |
| 	return dsp->tstate;
 | |
| }
 | |
| 
 | |
| int ast_dsp_get_tcount(struct ast_dsp *dsp) 
 | |
| {
 | |
| 	return dsp->tcount;
 | |
| }
 | |
| 
 | |
| static int _dsp_init(int reload)
 | |
| {
 | |
| 	struct ast_flags config_flags = { reload ? CONFIG_FLAG_FILEUNCHANGED : 0 };
 | |
| 	struct ast_config *cfg;
 | |
| 
 | |
| 	cfg = ast_config_load2(CONFIG_FILE_NAME, "dsp", config_flags);
 | |
| 	if (cfg == CONFIG_STATUS_FILEMISSING || cfg == CONFIG_STATUS_FILEINVALID) {
 | |
| 		ast_verb(5, "Can't find dsp config file %s. Assuming default silencethreshold of %d.\n", CONFIG_FILE_NAME, DEFAULT_SILENCE_THRESHOLD);
 | |
| 		thresholds[THRESHOLD_SILENCE] = DEFAULT_SILENCE_THRESHOLD;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (cfg == CONFIG_STATUS_FILEUNCHANGED) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (cfg) {
 | |
| 		const char *value;
 | |
| 
 | |
| 		value = ast_variable_retrieve(cfg, "default", "silencethreshold");
 | |
| 		if (value && sscanf(value, "%30d", &thresholds[THRESHOLD_SILENCE]) != 1) {
 | |
| 			ast_verb(5, "%s: '%s' is not a valid silencethreshold value\n", CONFIG_FILE_NAME, value);
 | |
| 			thresholds[THRESHOLD_SILENCE] = DEFAULT_SILENCE_THRESHOLD;
 | |
| 		} else if (!value) {
 | |
| 			thresholds[THRESHOLD_SILENCE] = DEFAULT_SILENCE_THRESHOLD;
 | |
| 		}
 | |
| 
 | |
| 		ast_config_destroy(cfg);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ast_dsp_get_threshold_from_settings(enum threshold which)
 | |
| {
 | |
| 	return thresholds[which];
 | |
| }
 | |
| 
 | |
| int ast_dsp_init(void)
 | |
| {
 | |
| 	return _dsp_init(0);
 | |
| }
 | |
| 
 | |
| int ast_dsp_reload(void)
 | |
| {
 | |
| 	return _dsp_init(1);
 | |
| }
 | |
| 
 |