mirror of
https://github.com/asterisk/asterisk.git
synced 2025-09-23 14:44:28 +00:00
git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@295 65c4cc65-6c06-0410-ace0-fbb531ad65f3
454 lines
11 KiB
C
Executable File
454 lines
11 KiB
C
Executable File
/*
|
|
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
|
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
|
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
|
*/
|
|
|
|
/* $Header$ */
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
|
|
#include "private.h"
|
|
|
|
#include "gsm.h"
|
|
#include "proto.h"
|
|
#ifdef K6OPT
|
|
#include "k6opt.h"
|
|
|
|
#define Short_term_analysis_filtering Short_term_analysis_filteringx
|
|
|
|
#endif
|
|
/*
|
|
* SHORT TERM ANALYSIS FILTERING SECTION
|
|
*/
|
|
|
|
/* 4.2.8 */
|
|
|
|
static void Decoding_of_the_coded_Log_Area_Ratios P2((LARc,LARpp),
|
|
word * LARc, /* coded log area ratio [0..7] IN */
|
|
word * LARpp) /* out: decoded .. */
|
|
{
|
|
register word temp1 /* , temp2 */;
|
|
register long ltmp; /* for GSM_ADD */
|
|
|
|
/* This procedure requires for efficient implementation
|
|
* two tables.
|
|
*
|
|
* INVA[1..8] = integer( (32768 * 8) / real_A[1..8])
|
|
* MIC[1..8] = minimum value of the LARc[1..8]
|
|
*/
|
|
|
|
/* Compute the LARpp[1..8]
|
|
*/
|
|
|
|
/* for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {
|
|
*
|
|
* temp1 = GSM_ADD( *LARc, *MIC ) << 10;
|
|
* temp2 = *B << 1;
|
|
* temp1 = GSM_SUB( temp1, temp2 );
|
|
*
|
|
* assert(*INVA != MIN_WORD);
|
|
*
|
|
* temp1 = GSM_MULT_R( *INVA, temp1 );
|
|
* *LARpp = GSM_ADD( temp1, temp1 );
|
|
* }
|
|
*/
|
|
|
|
#undef STEP
|
|
#define STEP( B, MIC, INVA ) \
|
|
temp1 = GSM_ADD( *LARc++, MIC ) << 10; \
|
|
temp1 = GSM_SUB( temp1, B << 1 ); \
|
|
temp1 = GSM_MULT_R( INVA, temp1 ); \
|
|
*LARpp++ = GSM_ADD( temp1, temp1 );
|
|
|
|
STEP( 0, -32, 13107 );
|
|
STEP( 0, -32, 13107 );
|
|
STEP( 2048, -16, 13107 );
|
|
STEP( -2560, -16, 13107 );
|
|
|
|
STEP( 94, -8, 19223 );
|
|
STEP( -1792, -8, 17476 );
|
|
STEP( -341, -4, 31454 );
|
|
STEP( -1144, -4, 29708 );
|
|
|
|
/* NOTE: the addition of *MIC is used to restore
|
|
* the sign of *LARc.
|
|
*/
|
|
}
|
|
|
|
/* 4.2.9 */
|
|
/* Computation of the quantized reflection coefficients
|
|
*/
|
|
|
|
/* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8]
|
|
*/
|
|
|
|
/*
|
|
* Within each frame of 160 analyzed speech samples the short term
|
|
* analysis and synthesis filters operate with four different sets of
|
|
* coefficients, derived from the previous set of decoded LARs(LARpp(j-1))
|
|
* and the actual set of decoded LARs (LARpp(j))
|
|
*
|
|
* (Initial value: LARpp(j-1)[1..8] = 0.)
|
|
*/
|
|
|
|
static void Coefficients_0_12 P3((LARpp_j_1, LARpp_j, LARp),
|
|
register word * LARpp_j_1,
|
|
register word * LARpp_j,
|
|
register word * LARp)
|
|
{
|
|
register int i;
|
|
register longword ltmp;
|
|
|
|
for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) {
|
|
*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
|
|
*LARp = GSM_ADD( *LARp, SASR( *LARpp_j_1, 1));
|
|
}
|
|
}
|
|
|
|
static void Coefficients_13_26 P3((LARpp_j_1, LARpp_j, LARp),
|
|
register word * LARpp_j_1,
|
|
register word * LARpp_j,
|
|
register word * LARp)
|
|
{
|
|
register int i;
|
|
register longword ltmp;
|
|
for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
|
|
*LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 ));
|
|
}
|
|
}
|
|
|
|
static void Coefficients_27_39 P3((LARpp_j_1, LARpp_j, LARp),
|
|
register word * LARpp_j_1,
|
|
register word * LARpp_j,
|
|
register word * LARp)
|
|
{
|
|
register int i;
|
|
register longword ltmp;
|
|
|
|
for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
|
|
*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
|
|
*LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ));
|
|
}
|
|
}
|
|
|
|
|
|
static void Coefficients_40_159 P2((LARpp_j, LARp),
|
|
register word * LARpp_j,
|
|
register word * LARp)
|
|
{
|
|
register int i;
|
|
|
|
for (i = 1; i <= 8; i++, LARp++, LARpp_j++)
|
|
*LARp = *LARpp_j;
|
|
}
|
|
|
|
/* 4.2.9.2 */
|
|
|
|
static void LARp_to_rp P1((LARp),
|
|
register word * LARp) /* [0..7] IN/OUT */
|
|
/*
|
|
* The input of this procedure is the interpolated LARp[0..7] array.
|
|
* The reflection coefficients, rp[i], are used in the analysis
|
|
* filter and in the synthesis filter.
|
|
*/
|
|
{
|
|
register int i;
|
|
register word temp;
|
|
register longword ltmp;
|
|
|
|
for (i = 1; i <= 8; i++, LARp++) {
|
|
|
|
/* temp = GSM_ABS( *LARp );
|
|
*
|
|
* if (temp < 11059) temp <<= 1;
|
|
* else if (temp < 20070) temp += 11059;
|
|
* else temp = GSM_ADD( temp >> 2, 26112 );
|
|
*
|
|
* *LARp = *LARp < 0 ? -temp : temp;
|
|
*/
|
|
|
|
if (*LARp < 0) {
|
|
temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp);
|
|
*LARp = - ((temp < 11059) ? temp << 1
|
|
: ((temp < 20070) ? temp + 11059
|
|
: GSM_ADD( temp >> 2, 26112 )));
|
|
} else {
|
|
temp = *LARp;
|
|
*LARp = (temp < 11059) ? temp << 1
|
|
: ((temp < 20070) ? temp + 11059
|
|
: GSM_ADD( temp >> 2, 26112 ));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* 4.2.10 */
|
|
#ifndef Short_term_analysis_filtering
|
|
|
|
/* SJB Remark:
|
|
* I tried 2 MMX versions of this function, neither is significantly
|
|
* faster than the C version which follows. MMX might be useful if
|
|
* one were processing 2 input streams in parallel.
|
|
*/
|
|
static void Short_term_analysis_filtering P4((u0,rp0,k_n,s),
|
|
register word * u0,
|
|
register word * rp0, /* [0..7] IN */
|
|
register int k_n, /* k_end - k_start */
|
|
register word * s /* [0..n-1] IN/OUT */
|
|
)
|
|
/*
|
|
* This procedure computes the short term residual signal d[..] to be fed
|
|
* to the RPE-LTP loop from the s[..] signal and from the local rp[..]
|
|
* array (quantized reflection coefficients). As the call of this
|
|
* procedure can be done in many ways (see the interpolation of the LAR
|
|
* coefficient), it is assumed that the computation begins with index
|
|
* k_start (for arrays d[..] and s[..]) and stops with index k_end
|
|
* (k_start and k_end are defined in 4.2.9.1). This procedure also
|
|
* needs to keep the array u0[0..7] in memory for each call.
|
|
*/
|
|
{
|
|
register word * u_top = u0 + 8;
|
|
register word * s_top = s + k_n;
|
|
|
|
while (s < s_top) {
|
|
register word *u, *rp ;
|
|
register longword di, u_out;
|
|
di = u_out = *s;
|
|
for (rp=rp0, u=u0; u<u_top;) {
|
|
register longword ui, rpi;
|
|
ui = *u;
|
|
*u++ = u_out;
|
|
rpi = *rp++;
|
|
u_out = ui + (((rpi*di)+0x4000)>>15);
|
|
di = di + (((rpi*ui)+0x4000)>>15);
|
|
/* make the common case fastest: */
|
|
if ((u_out == (word)u_out) && (di == (word)di)) continue;
|
|
/* otherwise do slower fixup (saturation) */
|
|
if (u_out>MAX_WORD) u_out=MAX_WORD;
|
|
else if (u_out<MIN_WORD) u_out=MIN_WORD;
|
|
if (di>MAX_WORD) di=MAX_WORD;
|
|
else if (di<MIN_WORD) di=MIN_WORD;
|
|
}
|
|
*s++ = di;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(USE_FLOAT_MUL) && defined(FAST)
|
|
|
|
static void Fast_Short_term_analysis_filtering P4((u,rp,k_n,s),
|
|
register word * u;
|
|
register word * rp, /* [0..7] IN */
|
|
register int k_n, /* k_end - k_start */
|
|
register word * s /* [0..n-1] IN/OUT */
|
|
)
|
|
{
|
|
register int i;
|
|
|
|
float uf[8],
|
|
rpf[8];
|
|
|
|
register float scalef = 3.0517578125e-5;
|
|
register float sav, di, temp;
|
|
|
|
for (i = 0; i < 8; ++i) {
|
|
uf[i] = u[i];
|
|
rpf[i] = rp[i] * scalef;
|
|
}
|
|
for (; k_n--; s++) {
|
|
sav = di = *s;
|
|
for (i = 0; i < 8; ++i) {
|
|
register float rpfi = rpf[i];
|
|
register float ufi = uf[i];
|
|
|
|
uf[i] = sav;
|
|
temp = rpfi * di + ufi;
|
|
di += rpfi * ufi;
|
|
sav = temp;
|
|
}
|
|
*s = di;
|
|
}
|
|
for (i = 0; i < 8; ++i) u[i] = uf[i];
|
|
}
|
|
#endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */
|
|
|
|
/*
|
|
* SJB Remark: modified Short_term_synthesis_filtering() below
|
|
* for significant (abt 35%) speedup of decompression.
|
|
* (gcc-2.95, k6 cpu)
|
|
* Please don't change this without benchmarking decompression
|
|
* to see that you haven't harmed speed.
|
|
* This function burns most of CPU time for untoasting.
|
|
* Unfortunately, didn't see any good way to benefit from mmx.
|
|
*/
|
|
static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
|
|
struct gsm_state * S,
|
|
register word * rrp, /* [0..7] IN */
|
|
register int k, /* k_end - k_start */
|
|
register word * wt, /* [0..k-1] IN */
|
|
register word * sr /* [0..k-1] OUT */
|
|
)
|
|
{
|
|
register word * v = S->v;
|
|
register int i;
|
|
register longword sri;
|
|
|
|
while (k--) {
|
|
sri = *wt++;
|
|
for (i = 8; i--;) {
|
|
register longword tmp1, tmp2;
|
|
|
|
/* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );
|
|
*/
|
|
tmp1 = rrp[i];
|
|
tmp2 = v[i];
|
|
|
|
tmp2 = (( tmp1 * tmp2 + 16384) >> 15) ;
|
|
/* saturation done below */
|
|
sri -= tmp2;
|
|
if (sri != (word)sri) {
|
|
sri = (sri<0)? MIN_WORD:MAX_WORD;
|
|
}
|
|
/* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );
|
|
*/
|
|
|
|
tmp1 = (( tmp1 * sri + 16384) >> 15) ;
|
|
/* saturation done below */
|
|
tmp1 += v[i];
|
|
if (tmp1 != (word)tmp1) {
|
|
tmp1 = (tmp1<0)? MIN_WORD:MAX_WORD;
|
|
}
|
|
v[i+1] = tmp1;
|
|
}
|
|
*sr++ = v[0] = sri;
|
|
}
|
|
}
|
|
|
|
|
|
#if defined(FAST) && defined(USE_FLOAT_MUL)
|
|
|
|
static void Fast_Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
|
|
struct gsm_state * S,
|
|
register word * rrp, /* [0..7] IN */
|
|
register int k, /* k_end - k_start */
|
|
register word * wt, /* [0..k-1] IN */
|
|
register word * sr /* [0..k-1] OUT */
|
|
)
|
|
{
|
|
register word * v = S->v;
|
|
register int i;
|
|
|
|
float va[9], rrpa[8];
|
|
register float scalef = 3.0517578125e-5, temp;
|
|
|
|
for (i = 0; i < 8; ++i) {
|
|
va[i] = v[i];
|
|
rrpa[i] = (float)rrp[i] * scalef;
|
|
}
|
|
while (k--) {
|
|
register float sri = *wt++;
|
|
for (i = 8; i--;) {
|
|
sri -= rrpa[i] * va[i];
|
|
if (sri < -32768.) sri = -32768.;
|
|
else if (sri > 32767.) sri = 32767.;
|
|
|
|
temp = va[i] + rrpa[i] * sri;
|
|
if (temp < -32768.) temp = -32768.;
|
|
else if (temp > 32767.) temp = 32767.;
|
|
va[i+1] = temp;
|
|
}
|
|
*sr++ = va[0] = sri;
|
|
}
|
|
for (i = 0; i < 9; ++i) v[i] = va[i];
|
|
}
|
|
|
|
#endif /* defined(FAST) && defined(USE_FLOAT_MUL) */
|
|
|
|
void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s),
|
|
|
|
struct gsm_state * S,
|
|
|
|
word * LARc, /* coded log area ratio [0..7] IN */
|
|
word * s /* signal [0..159] IN/OUT */
|
|
)
|
|
{
|
|
word * LARpp_j = S->LARpp[ S->j ];
|
|
word * LARpp_j_1 = S->LARpp[ S->j ^= 1 ];
|
|
|
|
word LARp[8];
|
|
int i;
|
|
#undef FILTER
|
|
#if defined(FAST) && defined(USE_FLOAT_MUL)
|
|
# define FILTER (* (S->fast \
|
|
? Fast_Short_term_analysis_filtering \
|
|
: Short_term_analysis_filtering ))
|
|
|
|
#else
|
|
# define FILTER Short_term_analysis_filtering
|
|
#endif
|
|
|
|
Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j );
|
|
|
|
Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
|
|
LARp_to_rp( LARp );
|
|
FILTER( S->u, LARp, 13, s);
|
|
|
|
Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
|
|
LARp_to_rp( LARp );
|
|
FILTER( S->u, LARp, 14, s + 13);
|
|
|
|
Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
|
|
LARp_to_rp( LARp );
|
|
FILTER( S->u, LARp, 13, s + 27);
|
|
|
|
Coefficients_40_159( LARpp_j, LARp);
|
|
LARp_to_rp( LARp );
|
|
FILTER( S->u, LARp, 120, s + 40);
|
|
|
|
}
|
|
|
|
void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s),
|
|
struct gsm_state * S,
|
|
|
|
word * LARcr, /* received log area ratios [0..7] IN */
|
|
word * wt, /* received d [0..159] IN */
|
|
|
|
word * s /* signal s [0..159] OUT */
|
|
)
|
|
{
|
|
word * LARpp_j = S->LARpp[ S->j ];
|
|
word * LARpp_j_1 = S->LARpp[ S->j ^=1 ];
|
|
|
|
word LARp[8];
|
|
|
|
#undef FILTER
|
|
#if defined(FAST) && defined(USE_FLOAT_MUL)
|
|
|
|
# define FILTER (* (S->fast \
|
|
? Fast_Short_term_synthesis_filtering \
|
|
: Short_term_synthesis_filtering ))
|
|
#else
|
|
# define FILTER Short_term_synthesis_filtering
|
|
#endif
|
|
|
|
Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );
|
|
|
|
Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
|
|
LARp_to_rp( LARp );
|
|
FILTER( S, LARp, 13, wt, s );
|
|
|
|
Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
|
|
LARp_to_rp( LARp );
|
|
FILTER( S, LARp, 14, wt + 13, s + 13 );
|
|
|
|
Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
|
|
LARp_to_rp( LARp );
|
|
FILTER( S, LARp, 13, wt + 27, s + 27 );
|
|
|
|
Coefficients_40_159( LARpp_j, LARp );
|
|
LARp_to_rp( LARp );
|
|
FILTER(S, LARp, 120, wt + 40, s + 40);
|
|
}
|