0.1 ctb overview 1

0.1 ctb overview

The ctb (communication toolbox) library was realized, to simplify the communication with other
instruments throughout the serial com ports (at first). To make my life easier, it should works
with Linux and all win32 plattforms (excepted windows 3.1, which is a only 16bit OS) because |
develope my applications for both plattforms).

Some times later GPIB support was added to make ctb an integrated part for the extensive test
and calibration system of a company | worked these days.

The main goal of the library was a non-blocked communication to avoid frozen GUIs waiting for
data which in some conditions never arrives.

On the base ctb defines an abstract class |IOBase, which must be derivate for several interfaces
(at now this was done for the RS232 comports and GPIB IEEE488 interface).

This leads to another feature: Because all classes depends on one super class, you have just
open your wanted interface and don’t worry about it's special typ later. This is like the 'Virtual
Instrument’ featured by Nation Instruments LabView.

Last not least: ctb provides one written code for Linux and Windows (compiles well with GNU
G++ and VC++). Without any dependences (execept for a standard C++ compilier) ctb runs also
in small enviroments like embedded systems and doesn’t need any graphic stuff for use.

ctb is composed of five parts:

ctb::IOBase class

ctb::SerialPort class

ctb::GpibDevice class

« ctb::Timer class

ctb::Fifo class

0.1.1 IOBase class

An abstract class for different interfaces. The idea behind this: Similar to the virtual file system
this class defines a lot of preset member functions, which the derivate classes must be overload.

In the main thing these are: open a interface (such as RS232), reading and writing non blocked
through the interface and at last, close it.

For special interface settings the method ioctl was defined. (control interface). ioctl covers some
interface dependent settings like switch on/off the RS232 status lines and must also be defined
from each derivated class.

0.1.2 SerialPort class

The class for the serial ports is named as ctb::SerialPort. SerialPort is a wrapper for non blocked
reading and writing. This is easy under linux, but with windows a lot more tricky. SerialPort is as
simple as possible. It doesn’t create any gui events or signals, so it works also standalone. It's
also not a device driver, means, you must call the read method, if you look for receiving data.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

You can write any desired data with any length (length type is size_t, | think, on win32 and linux
this is a 32Bit integer) and SerialPort returns the really writen data length, also you can read a lot
of data and SerialPort returns the really received data count.

Both, read and write returns immediatelly. Using these, the program never blocks. Also IOBase
implements a blocked read and write. You can use these functions, if you want a definitiv count
of data and never accept less than this. Because there is a difficulty, when the communication
is interrupted or death, both blocked functions get a timeout flag to returns after a given time
interval. The timeouts will be handled with the second timer class.

As an additional benefit ctb features also 9 Bit transmission (with take advantage of the parity bit),
non-standard baudrates (depending on your hardware but not on ctb) and all parity eventualities
including static parity settings like Mark and Space.

0.1.3 GpibDevice class

Named as ctb::GpibDevice. In the philosophy of the SerialPort class GpibDevice also supports
non-blocking communication. You can instant as many GpibDevice objects as you need for in-
stance to communicate with a lot of different bus participants in a typical GPIB enviroment. GPIB
support was tested with PCI cards and USB adapter from Nation Instrument and Keithley.

0.1.4 Timer class

The idea of the ctb::Timer class is to base on the Unix C alarm function. You create a Timer with
a given alarm time and a adress of flag, which the timer must set after the time is over.

Because the alarm function cannot used more than once in the same process (under windows
| don’t know a similar function), every timer instance will be a separate thread after starting it.
So you can start a timer and continue in your program, make a lot of things and test the flag
whenever you want this. (For example, you read/write a given count of data).

Note:

| think, it's a better style, to request a given count of data in 100ms (for example) and trap the
situation, if there are not enough data after this time. And not do this for every byte!

0.1.5 Fifo cass

Provides a simple thread safe fifo to realize a fast and simple communication pipe between
two threads (and was used also as a put back mechanism for the wxIOBase and it's derivated
classes).

ctb::Fifo tackles the concurrently access from different threads with an internal temporary pointer
asignment which was atomic. From there no mutex or semaphore is involved and lead to a fast
access.

Please note:

The thread safeness is limited to the put/get write/read methods but which should be sufficent for
a fifo.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.2 libctb Namespace Documentation 3

0.2 libctb Namespace Documentation

0.2.1 ctb Namespace Reference
Classes

* class Fifo

* struct Gpib_DCS
+ class GpibDevice
+ class IOBase

* class SerialPort

the linux version

« struct SerialPort_ DCS

» struct SerialPort_ EINFO
« class SerialPort_x

* class Timer

A thread based timer class for handling timeouts in an easier way.

* struct timer_control
A data struct, using from class timer.

Enumerations

« enum { CTB_COMMON = 0x0000, CTB_SERIAL = 0x0100, CTB_GPIB = 0x0200, CTB_-
TIMEOUT_INFINITY = OXFFFFFFFF }
+ enum Gpibloctls {

CTB_GPIB_SETADR = CTB_GPIB, CTB_GPIB_GETRSP, CTB_GPIB_GETSTA, CTB._-
GPIB_GETERR,

CTB_GPIB_GETLINES, CTB_GPIB_SETTIMEOUT, CTB_GPIB_GTL, CTB_GPIB_REN,

CTB_GPIB_RESET_BUS, CTB_GPIB_SET_EOS_CHAR, CTB_GPIB_GET_EOS_CHAR,
CTB_GPIB_SET_EOS_MODE,

CTB_GPIB_GET_EOS_MODE }
» enum GpibTimeout {

GpibTimeoutNone = 0, GpibTimeout10us, GpibTimeout30us, GpibTimeout100us,
GpibTimeout300us, GpibTimeout1ms, GpibTimeout3ms, GpibTimeout10ms,
GpibTimeout30ms, GpibTimeout100ms, GpibTimeout300ms, GpibTimeoutls,
GpibTimeout3s, GpibTimeout10s, GpibTimeout30s, GpibTimeout100s,

GpibTimeout300s, GpibTimeout1000s }
» enum IOBaseloctls { CTB_RESET = CTB_COMMON }
» enum Parity {

ParityNone, ParityOdd, ParityEven, ParityMark,
ParitySpace }

Defines the different modes of parity checking. Under Linux, the struct termios will be set to
provide the wanted behaviour.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

» enum SerialLineState {
LinestateDcd = 0x040, LinestateCts = 0x020, LinestateDsr = 0x100, LinestateDtr = 0x002,

LinestateRing = 0x080, LinestateRts = 0x004, LinestateNull = 0x000 }
» enum SerialPortloctls {

CTB_SER_GETEINFO = CTB_SERIAL, CTB_SER_GETBRK, CTB_SER_GETFRM,
CTB_SER_GETOVR,

CTB_SER_GETPAR, CTB_SER_GETINQUE, CTB_SER_SETPAR }

Functions

* bool GetAvailablePorts (std::vector< std::string > &result, bool checklnUse=true)
returns all available COM ports as an array of strings.

char GetKey ()
void sleepms (unsigned int ms)

sleepms A plattform independent function, to go to sleep for the given time interval.

static void timer_exit (void xarg)
static void « timer_fnc (void xarg)

Variables

+ const char x* COM1

+ const char x COM1 = "/dev/ttyS0"

« const char x COM10

« const char x COM10 = "/dev/ttyS9"
 const char x COM11

» const char x COM11 = "/dev/ttyS10"
 const char x COM12

+ const char x COM12 = "/dev/ttyS11"
+ const char x COM13

+ const char x COM13 = "/dev/ttyS12"
+ const char x COM14

+ const char x COM14 = "/dev/ttyS13"
+ const char x COM15

+ const char x COM15 = "/dev/ttyS14"
+ const char x COM16

+ const char x COM16 = "/dev/ttyS15"
« const char x COM17

+ const char x COM17 = "/dev/ttyS16"
+ const char x COM18

+ const char x COM18 = "/dev/ttyS17"
« const char x COM19

« const char x COM19 = "/dev/ttyS18"
+ const char x COM2

» const char x COM2 = "/dev/ttyS1"

» const char x COM20

+ const char « COM20 = "/dev/ttyS19"

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.2 libctb Namespace Documentation 5

» const char x COM3

» const char «* COMS3 = "/dev/ttyS2"
+ const char « COM4

« const char x COM4 = "/dev/ttyS3"
+ const char x COM5

+ const char x COMS5 = "/dev/ttyS4"
+ const char x COM6

+ const char x COM6 = "/dev/ttyS5"
 const char x COM7

+ const char x COM7 = "/dev/ttyS6"
+ const char x COM8

+ const char x COM8 = "/dev/ttyS7"
» const char x COM9

+ const char x COM9 = "/dev/ttyS8"
+ const char x GPIB1

+ const char « GPIB1 = "gpib1"

» const char x« GPIB2

« const char x« GPIB2 = "gpib2"

» static gpibErr_t gpibErrors []

0.2.1.1 Enumeration Type Documentation

enum ctb::Gpibloctls

The following loctl calls are only valid for the GpibDevice class.

Enumerator:

CTB_GPIB_SETADR Set the adress of the via gpib connected device.
CTB_GPIB_GETRSP Get the serial poll byte

CTB_GPIB_GETSTA Get the GPIB status

CTB_GPIB_GETERR Get the last GPIB error number

CTB_GPIB_GETLINES Get the GPIB line status (hardware control lines) as an integer.
The lowest 8 bits correspond to the current state of the lines.

CTB_GPIB_SETTIMEOUT Set the GPIB specific timeout
CTB_GPIB_GTL Forces the specified device to go to local program mode

CTB_GPIB_REN This routine can only be used if the specified GPIB Interface Board is the
System Controller. Remember that even though the REN line is asserted, the device(s)
will not be put into remote state until is addressed to listen by the Active Controller

CTB_GPIB_RESET_BUS The command asserts the GPIB interface clear (IFC) line for ast
least 100us if the GPIB board is the system controller. This initializes the GPIB and
makes the interface CIC and active controller with ATN asserted. Note! The IFC signal
resets only the GPIB interface functions of the bus devices and not the internal device
functions. For a device reset you should use the CTB_RESET command above.

CTB_GPIB_SET_EOS_CHAR Configure the end-of-string (EOS) termination character.
Note! Defining an EOS byte does not cause the driver to automatically send that byte at
the end of write I/O operations. The application is responsible for placing the EOS byte
at the end of the data strings that it defines. (National Instruments NI-488.2M Function
Reference Manual)

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

CTB_GPIB_GET_EOS_CHAR Get the internal EOS termination character (see above).

CTB_GPIB_SET_EOS_MODE Set the EOS mode (handling).m_eosMode may be a com-
bination of bits ORed together. The following bits can be used: 0x04: Terminate read
when EOS is detected. 0x08: Set EOI (End or identify line) with EOS on write function
0x10: Compare all 8 bits of EOS byte rather than low 7 bits (all read and write functions).

CTB_GPIB_GET_EOS_MODE Get the internal EOS mode (see above).

Definition at line 141 of file gpib.h.

enum ctb::GpibTimeout

NI488.2 API defines the following valid timeouts.

Enumerator:

GpibTimeoutNone no timeout (infinity)
GpibTimeout10us 10 micro seconds
GpibTimeout30us 30 micro seconds
GpibTimeout100us 100 micro seconds
GpibTimeout300us 300 micro seconds
GpibTimeoutlms 1 milli second
GpibTimeout3ms 3 milli seconds
GpibTimeout10ms 10 milli seconds
GpibTimeout30ms 30 milli seconds
GpibTimeout100ms 0.1 seconds
GpibTimeout300ms 0.3 seconds
GpibTimeoutls 1 second
GpibTimeout3s 3 seconds
GpibTimeout10s 10 seconds
GpibTimeout30s 30 seconds
GpibTimeout100s 100 seconds
GpibTimeout300s 300 seconds (5 minutes)
GpibTimeout1000s 1000 seconds

Definition at line 30 of file gpib.h.

enum ctb::I0Baseloctls

Defines the ioctl calls for derivated classes. The following loctl calls are valid for all from wx-
IOBase derivated classes.

Enumerator:

CTB_RESET Reset the connected device. For a serial (RS232) connection, a break is
send. For GPIB the IFC (Interface Clear) line is set.

Definition at line 37 of file iobase.h.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.2 libctb Namespace Documentation 7

enum ctb::Parity

Defines the different modes of parity checking. Under Linux, the struct termios will be set to
provide the wanted behaviour.

Enumerator:

ParityNone no parity check

ParityOdd odd parity check

ParityEven even parity check
ParityMark mark (not implemented yet)
ParitySpace space (not implemented yet)

Definition at line 80 of file serportx.h.

enum ctb::SerialLineState

Defines the different modem control lines. The value for each item are defined in
/usr/include/bits/ioctl-types.h. This is the linux definition. The window version translate each
item in it's own value. modem lines defined in ioctl-types.h

#define TIOCM_LE 0x001
#define TIOCM_DTR 0x002
#define TIOCM_RTS 0x004
#define TIOCM_ST 0x008
#define TIOCM_SR 0x010
#define TIOCM_CTS 0x020
#define TIOCM_CAR 0x040
#define TIOCM_RNG 0x080
#define TIOCM_DSR 0x100
#define TIOCM_CD TIOCM_CAR
#define TIOCM_RI TIOCM_RNG

Enumerator:

LinestateDcd Data Carrier Detect (read only)
LinestateCts Clear To Send (read only)
LinestateDsr Data Set Ready (read only)
LinestateDtr Data Terminal Ready (write only)
LinestateRing Ring Detect (read only)
LinestateRts Request To Send (write only)
LinestateNull no active line state, use this for clear

Definition at line 116 of file serportx.h.

enum ctb::SerialPortloctls

The following loctl calls are only valid for the SerialPort class.

Enumerator:

CTB_SER_GETEINFO Get all numbers of occured communication errors (breaks framing,
overrun and parity), so the args parameter of the loctl call must pointed to a SerialPort_-
EINFO struct.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

CTB_SER_GETBRK Get integer 1, if a break occured since the last call so the args param-
eter of the loctl methode must pointed to an integer value. If there was no break, the
result is integer 0.

CTB_SER_GETFRM Get integer 1, if a framing occured since the last call so the args pa-
rameter of the loctl methode must pointed to an integer value. If there was no break,
the result is integer 0.

CTB_SER_GETOVR Get integer 1, if a overrun occured since the last call so the args
parameter of the loctl methode must pointed to an integer value. If there was no break,
the result is integer 0.

CTB_SER_GETPAR Get integer 1, if a parity occured since the last call so the args param-
eter of the loctl methode must pointed to an integer value. If there was no break, the
result is integer 0.

CTB_SER_GETINQUE Get the number of bytes received by the serial port driver but not

yet read by a Read or Readv Operation.
CTB_SER_SETPAR Set the parity bit on or off to use it as a ninth bit.

Definition at line 212 of file serportx.h.

0.2.1.2 Function Documentation

bool ctb::GetAvailablePorts (std::vector< std::string > & result, bool checkInlUse = t rue)
returns all available COM ports as an array of strings.
Parameters:

result stores the available COM ports
checkInUse return only ports which are available AND unused (default)

Returns:

true if successful, false otherwise

Definition at line 12 of file portscan.cpp.

References ctb::SerialPort_x::Open().

void ctb::sleepms (unsigned int ms)

sleepms A plattform independent function, to go to sleep for the given time interval.

Parameters:

ms time interval in milli seconds

Definition at line 92 of file timer.cpp.
Referenced by ctb::I0OBase::ReadUntilEOS(), ctb::IOBase::Readv(), and ctb::IOBase::Writev().

0.2.1.3 Variable Documentation

const charx ctb::COM1
specifices the first serial port

Definition at line 24 of file serport.cpp.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.2 libctb Namespace Documentation

const charx ctb:COM1 = "/dev/ttyS0"
specifices the first serial port

Definition at line 24 of file serport.cpp.

const charx ctb::COM10
specifies the tenth serial port

Definition at line 33 of file serport.cpp.

const charx ctb:COM10 = "/dev/ttyS9"
specifies the tenth serial port

Definition at line 33 of file serport.cpp.

const charx ctb::COM11
specifies the eleventh serial port

Definition at line 34 of file serport.cpp.

const charx ctb:COM11 = "/dev/ttyS10"
specifies the eleventh serial port

Definition at line 34 of file serport.cpp.

const charx ctb::COM12
specifies the twelfth serial port

Definition at line 35 of file serport.cpp.

const charx ctb::COM12 = "/dev/ttyS11"
specifies the twelfth serial port

Definition at line 35 of file serport.cpp.

const charx ctb::COM13
specifies the thriteenth serial port

Definition at line 36 of file serport.cpp.

const charx ctb:COM13 = "/dev/ttyS12"
specifies the thriteenth serial port

Definition at line 36 of file serport.cpp.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

10

const charx ctb::COM14
specifies the fourteenth serial port

Definition at line 37 of file serport.cpp.

const charx ctb::COM14 = "/dev/ttyS13"
specifies the fourteenth serial port

Definition at line 37 of file serport.cpp.

const charx ctb::COM15
specifies the fiveteenth serial port

Definition at line 38 of file serport.cpp.

const charx ctb::COM15 = "/dev/ttyS14"
specifies the fiveteenth serial port

Definition at line 38 of file serport.cpp.

const charx ctb::COM16
specifies the sixteenth serial port

Definition at line 39 of file serport.cpp.

const charx ctb:COM16 = "/dev/ttyS15"
specifies the sixteenth serial port

Definition at line 39 of file serport.cpp.

const charx ctb:COM17
specifies the seventeenth serial port

Definition at line 40 of file serport.cpp.

const charx ctb::COM17 = "/dev/ttyS16"
specifies the seventeenth serial port

Definition at line 40 of file serport.cpp.

const charx ctb::COM18
specifies the eighteenth serial port

Definition at line 41 of file serport.cpp.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.2 libctb Namespace Documentation

11

const charx ctb::COM18 = "/dev/ttyS17"
specifies the eighteenth serial port

Definition at line 41 of file serport.cpp.

const charx ctb::COM19
specifies the nineteenth serial port

Definition at line 42 of file serport.cpp.

const charx ctb:COM19 = "/dev/ttyS18"
specifies the nineteenth serial port

Definition at line 42 of file serport.cpp.

const charx ctb::COM2
specifies the second serial port

Definition at line 25 of file serport.cpp.

const charx ctb::COM2 = "/dev/ttyS1"
specifies the second serial port

Definition at line 25 of file serport.cpp.

const charx ctb::COM20
specifies the twentieth serial port

Definition at line 43 of file serport.cpp.

const charx ctb:COM?20 = "/dev/ttyS19"
specifies the twentieth serial port

Definition at line 43 of file serport.cpp.

const charx ctb::COM3
specifies the third serial port

Definition at line 26 of file serport.cpp.

const charx ctb:COMS3 = "/dev/ttyS2"
specifies the third serial port

Definition at line 26 of file serport.cpp.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

12

const charx ctb::COM4
specifies the fourth serial port

Definition at line 27 of file serport.cpp.

const charx ctb:COM4 = "/dev/ttyS3"
specifies the fourth serial port

Definition at line 27 of file serport.cpp.

const charx ctb::COMS5
specifies the fifth serial port

Definition at line 28 of file serport.cpp.

const charx ctb::COMS5 = "/dev/ttyS4"
specifies the fifth serial port

Definition at line 28 of file serport.cpp.

const charx ctb::COM6
specifies the sixth serial port

Definition at line 29 of file serport.cpp.

const charx ctb:COMS6 = "/dev/ttyS5"
specifies the sixth serial port

Definition at line 29 of file serport.cpp.

const charx ctb::COM?7
specifies the seventh serial port

Definition at line 30 of file serport.cpp.

const charx ctb::COM?7 = "/dev/ttyS6"
specifies the seventh serial port

Definition at line 30 of file serport.cpp.

const charx ctb::COMS8
specifies the eighth serial port

Definition at line 31 of file serport.cpp.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.2 libctb Namespace Documentation

const charx ctb:COMS = "/dev/ttyS7"
specifies the eighth serial port

Definition at line 31 of file serport.cpp.

const charx ctb::COM9
specifies the ninth serial port

Definition at line 32 of file serport.cpp.

const charx ctb:COM?9 = "/dev/ttyS8"
specifies the ninth serial port

Definition at line 32 of file serport.cpp.

const charx ctb:GPIB1
defines the os specific name for the first gpib controller

Definition at line 23 of file gpib.cpp.

const charx ctb::GPIB1 = "gpib1"
defines the os specific name for the first gpib controller
Definition at line 23 of file gpib.cpp.

const charx ctb::GPIB2
defines the os specific name for the second gpib controller
Definition at line 24 of file gpib.cpp.

const charx ctb::GPIB2 = "gpib2"
defines the os specific name for the second gpib controller

Definition at line 24 of file gpib.cpp.

gpibErr_t ctb::gpibErrors[] [static]

Initial value:

{0, "EDVR", "DOS Error"},

{1,"ECIC","Specified GPIB Interface Board is Not Active Controller"},
{2, "ENOL", "No present listing device"},

{3, "EADR", "GPIB Board has not been addressed properly"},

{4, "EARG", "Invalid argument"},

{5,"ESAC", "Specified GPIB Interface Board is not System Controller"},
{6,"EABO","I/O operation aborted (time-out)"},

{7, "ENEB", "Non-existent GPIB board"},

{10, "EOIP", "Routine not allowed during asynchronous I/O operation"},

{11,"ECAP", "No capability for operation"},

{12, "EFSO","File System Error"},

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

14

{14, "EBUS", "Command byte transfer error"},
{15,"ESTB", "Serial poll status byte lost"},
{16,"ESQR", "SRQ stuck in ON position"},

{20, "ETAB", "Table problem"},

{247,"EINT", "No interrupt configured on board"},
{248, "EWMD", "Windows 1is not in Enhanced mode"},
{249, "EVDD", "GPIB driver is not installed"},

{250, "EOVR", "Buffer Overflow"},

{251, "ESML", "Two library calls running simultaneously"},
{252, "ECFG", "Board type does not match GPIB.CFG"},
{253, "ETMR", "No Windows timers available"},

{254, "ESLC", "No Windows selectors available"},
{255, "EBRK", "Control-Break pressed"}

Definition at line 32 of file gpib.cpp.
Referenced by ctb::GpibDevice::GetErrorString().

0.3 libctb Class Documentation

0.3.1 ctb::Fifo Class Reference

#include <fifo.h>

0.3.1.1 Detailed Description

A simple thread safe fifo to realize a put back mechanism for the wxIOBase and it’s derivated
classes.

Definition at line 25 of file fifo.h.

Public Member Functions

» virtual void clear ()

clear all internal memory and set the read and write pointers to the start of the internal memory.
Note:

This function is not thread safe! Don’t use it, if another thread takes access to the fifo instance.
Use a looping get() or read() call instead of this.

Fifo (size_t size)
the constructor initialize a fifo with the given size.

virtual int get (char xch)
fetch the next available byte from the fifo.

* size_titems ()
query the fifo for it's available bytes.

virtual int put (char ch)
put a character into the fifo.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 15

« virtual int read (char «data, int count)
read a given count of bytes out of the fifo.

» virtual int write (char xdata, int count)
write a given count of bytes into the fifo.

* virtual ~Fifo ()
the destructor destroys all internal memory.

Protected Attributes

« char x m_begin
e char + m_end
» char x m_rdptr
» size tm_size
* char x m_wrptr

0.3.1.2 Constructor & Destructor Documentation

ctb::Fifo::Fifo (size_t size)

the constructor initialize a fifo with the given size.

Parameters:

size size of the fifo

Definition at line 14 of file fifo.cpp.

References m_begin, m_end, m_rdptr, m_size, and m_wrptr.

ctb::Fifo:~Fifo () [virtuall
the destructor destroys all internal memory.
Definition at line 22 of file fifo.cpp.

References m_begin.

0.3.1.3 Member Function Documentation

void ctb::Fifo::clear) [virtual]
clear all internal memory and set the read and write pointers to the start of the internal mem-
ory.
Note:
This function is not thread safe! Don’t use it, if another thread takes access to the fifo in-
stance. Use a looping get() or read() call instead of this.
Definition at line 27 of file fifo.cpp.

References m_begin, m_rdptr, and m_wrptr.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

16

int ctb::Fifo::get (char « ch) [virtual]
fetch the next available byte from the fifo.

Parameters:

ch points to a charater to store the result

Returns:

1 if successful, 0 otherwise

Definition at line 32 of file fifo.cpp.

References m_begin, m_end, m_rdptr, and m_wrptr.

size_t ctb::Fifo:items ()

query the fifo for it's available bytes.

Returns:

count of readable bytes, storing in the fifo

Definition at line 44 of file fifo.cpp.
References m_rdptr, m_size, and m_wrptr.
Referenced by ctb::SerialPort::Read(), and ctb::GpibDevice::Read().

int ctb::Fifo:put (char ch) [virtual]

put a character into the fifo.

Parameters:

ch the character to put in

Returns:

1 if successful, 0 otherwise

Definition at line 69 of file fifo.cpp.
References m_begin, m_end, m_rdptr, and m_wrptr.
Referenced by ctb::I0Base::PutBack().

int ctb::Fifo::read (char x data, int count) [virtual]

read a given count of bytes out of the fifo.

Parameters:

data memory to store the readed data
count number of bytes to read

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation

17

Returns:

On success, the number of bytes read are returned, 0 otherwise

Definition at line 91 of file fifo.cpp.
References m_begin, m_end, m_rdptr, and m_wrptr.
Referenced by ctb::SerialPort::Read(), and ctb::GpibDevice::Read().

int ctb::Fifo::write (char * data, int count) [virtual]

write a given count of bytes into the fifo.

Parameters:
data start of the data to write
count number of bytes to write
Returns:

On success, the number of bytes written are returned, 0 otherwise

Definition at line 111 of file fifo.cpp.

References m_begin, m_end, m_rdptr, and m_wrptr.

0.3.1.4 Member Data Documentation

charx ctb::Fifo:m_begin [protected]
the start of the internal fifo buffer
Definition at line 31 of file fifo.h.

Referenced by clear(), Fifo(), get(), put(), read(), write(), and ~Fifo().

charx ctb:Fifo::m_end [protected]
the end of the internal fifo buffer (m_end marks the first invalid byte AFTER the internal buffer)
Definition at line 36 of file fifo.h.

Referenced by Fifo(), get(), put(), read(), and write().

charx ctb:Fifo:m_rdptr [protected]
the current read position
Definition at line 38 of file fifo.h.

Referenced by clear(), Fifo(), get(), items(), put(), read(), and write().

size_t ctb::Fifo::m_size [protected]
the size of the fifo
Definition at line 29 of file fifo.h.

Referenced by Fifo(), and items().

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

18

charx ctb:Fifo:m_wrptr [protected]

the current write position

Definition at line 40 of file fifo.h.

Referenced by clear(), Fifo(), get(), items(), put(), read(), and write().
The documentation for this class was generated from the following files:

» fifo.h
« fifo.cpp

0.3.2 ctb::Gpib_DCS Struct Reference

#include <gpib.h>

0.3.2.1 Detailed Description

The device control struct for the gpib communication class. This struct should be used, if you
refer advanced parameter.

Definition at line 76 of file gpib.h.

Public Member Functions

 char x GetSettings ()
returns the internal parameters in a more human readable string format like "Adr: (1,0) to:1ms’.

» Gpib_DCS ()
the constructor initiate the device control struct with the common useful values and set the internal
timeout for the GPIB controller to 1ms to avoid (or better reduce) blocking

« ~Gpib_DCS ()

Public Attributes

* int m_address1

* int m_address2

» char m_buf [32]

+ unsigned char m_eosChar
* unsigned char m_eosMode
* bool m_eot

» GpibTimeout m_timeout

0.3.2.2 Constructor & Destructor Documentation

ctb:Gpib_DCS:~Gpib_DCS () [inline]
to avoid memory leak warnings generated by swig

Definition at line 107 of file gpib.h.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 19

ctb::Gpib_DCS::Gpib_DCS () [inline]

the constructor initiate the device control struct with the common useful values and set the internal
timeout for the GPIB controller to 1ms to avoid (or better reduce) blocking

set default device address to 1

set the timeout to a short value to avoid blocking (default are 1msec)
EOS character, see above!

EOS mode, see above!

Definition at line 113 of file gpib.h.

References ctb::GpibTimeoutims, m_address1, m_address2, m_eosChar, m_eosMode, m_eot,
and m_timeout.

0.3.2.3 Member Function Documentation

char * ctb::Gpib_DCS::GetSettings ()

returns the internal parameters in a more human readable string format like ’Adr: (1,0) to:1ms’.

Returns:

the settings as a null terminated string

Definition at line 59 of file gpib.cpp.
References m_address1, m_address2, m_buf, and m_timeout.

Referenced by ctb::GpibDevice::GetSettingsAsString().

0.3.2.4 Member Data Documentation

int ctb::Gpib_DCS:m_addressl
primary address of GPIB device
Definition at line 79 of file gpib.h.

Referenced by GetSettings(), Gpib_DCS(), ctb::GpibDevice::loctl(), ctb::GpibDevice::Open(), and
ctb::GpibDevice::OpenDevice().

int ctb::Gpib_DCS::m_address2

secondary address of GPIB device

Definition at line 81 of file gpib.h.

Referenced by GetSettings(), Gpib_DCS(), and ctb::GpibDevice::OpenDevice().

char ctb:Gpib_DCS::m_buf[32]
buffer for internal use

Definition at line 105 of file gpib.h.
Referenced by GetSettings().

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

20

unsigned char ctb:Gpib_DCS::m_eosChar

Defines the EOS character. Note! Defining an EOS byte does not cause the driver to automati-
cally send that byte at the end of write 1/0 operations. The application is responsible for placing
the EOS byte at the end of the data strings that it defines. (National Instruments NI-488.2M
Function Reference Manual)

Definition at line 94 of file gpib.h.
Referenced by Gpib_DCS(), ctb::GpibDevice::loctl(), and ctb::GpibDevice::OpenDevice().

unsigned char ctb::Gpib_DCS::m_eosMode

Set the EOS mode (handling).m_eosMode may be a combination of bits ORed together. The
following bits can be used: 0x04: Terminate read when EOS is detected. 0x08: Set EOI (End or
identify line) with EOS on write function 0x10: Compare all 8 bits of EOS byte rather than low 7
bits (all read and write functions).

Definition at line 103 of file gpib.h.
Referenced by Gpib_DCS(), ctb::GpibDevice::loctl(), and ctb::GpibDevice::OpenDevice().

bool ctb::Gpib_DCS::m_eot

EOT enable

Definition at line 85 of file gpib.h.

Referenced by Gpib_DCS(), and ctb::GpibDevice::OpenDevice().

GpibTimeout ctb::Gpib_DCS:m_timeout

I/O timeout

Definition at line 83 of file gpib.h.

Referenced by GetSettings(), Gpib_DCS(), and ctb::GpibDevice::OpenDevice().

The documentation for this struct was generated from the following files:

» gpib.h
* gpib.cpp

0.3.3 ctb::GpibDevice Class Reference

#include <gpib.h>
Inheritance diagram for ctb::GpibDevice:

ctb::IOBase

ctb::GpibDevice

Collaboration diagram for ctb::GpibDevice:

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 21

Imififo

|ctb::léBase | |ctb::Gpib7DCS |

m_dcs

ctb::GpibDevice

0.3.3.1 Detailed Description

GpibDevice is the basic class for communication via the GPIB bus.

Definition at line 222 of file gpib.h.

Public Member Functions

+ const char x ClassName ()

returns the name of the class instance. You find this useful, if you handle different devices like a
serial port or a gpib device via a IOBase pointer.

* int Close ()
« virtual const char * GetErrorDescription (int error)

returns a more detail description of the given error number.

» virtual const char x GetErrorNotation (int error)
returns a short notation like 'EABO’ of the given error number.

« virtual char x GetSettingsAsString ()
request the current settings of the connected gpib device as a null terminated string.

» GpibDevice ()
« int lbrd (char *buf, size_t len)
This is only for internal usage.

« int Ibwrt (char «buf, size_t len)
This is only for internal usage.

« virtual int loctl (int cmd, void xargs)

Many operating characteristics are only possible for special devices. To avoid the need of a lot of
different functions and to give the user a uniform interface, all this special operating instructions
will covered by one loctl methode (like the linux ioctl call). The loctl command (cmd) has encoded
in it whether the argument is an in parameter or out parameter, and the size of the argument args
in bytes. Macros and defines used in specifying an ioctl request are located in iobase.h and the
header file for the derivated device (for example in gpib.h).

« int IsOpen ()
+ int Open (const char xdevname, void xdcs=0L)
+ int Open (const char xdevname, int address)

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

22

Opens a GPIB device in a user likely way. Insteed of using the Device Control Struct just input
your parameter in a more intuitive manner.

* int PutBack (char ch)

In some circumstances you want to put back a already readed byte (for instance, you have over-
readed it and like to parse the recieving bytes again). The internal fifo stores fifoSize characters
until you have to read again.

* int Read (char xbuf, size tlen)
« virtual int ReadUntilEOS (char x&readbuf, size_t xreadedBytes, char xeosString="\n", long
timeout_in_ms=1000L, char quota=0)

ReadUntilEos read bytes from the interface until the EOS string was received or a timeout occurs.
ReadUntilEos returns the count of bytes been readed. The received bytes are stored on the heap
point by the readbuf pointer and must delete by the caller.

+ int Readv (char xbuf, size_t len, int xtimeout_flag, bool nice=false)

readv() attempts to read up to len bytes from the interface into the buffer starting at buf. readv() is
blocked till len bytes are readed or the timeout_flag points on a int greater then zero.

+ int Readv (char «buf, size_t len, unsigned int timeout_in_ms)

readv() attempts to read up to len bytes from the interface into the buffer starting at buf. readv() is
blocked till len bytes are readed or the given timeout in milliseconds was reached.

* int Write (char «buf, size_t len)

* int Writev (char «buf, size_t len, int «timeout_flag, bool nice=false)
* int Writev (char «buf, size_t len, unsigned int timeout_in_ms)

« virtual ~GpibDevice ()

Static Public Member Functions

« static int FindListeners (int board=0)

FindListener returns all listening devices connected to the GPIB bus of the given board. This
function is not member of the GPIB class, becauce it should do it’s job before you open any GPIB
connection.

Protected Types

» enum { fifoSize = 256 }

Protected Member Functions

« int CloseDevice ()
« virtual const char x GetErrorString (int error, bool detailed)

returns a short notation or more detail description of the given GPIB error number.

+ int OpenDevice (const char xdevname, void xdcs)

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 23

Protected Attributes

 int m_board

the internal board identifier, O for the first gpib controller, 1 for the second one

 int m_count
Gpib_DCS m_dcs

contains the internal settings of the GPIB connection like address, timeout, end of string character
and so one...

e int m_error

Fifo + m_fifo

internal fifo (first in, first out queue) to put back already readed bytes into the reading stream. After
put back a single byte or sequence of characters, you can read them again with the next Read
call.

e intm_hd

the file descriptor of the connected gpib device

* int m_state

contains the internal conditions of the GPIB communication like GPIB error, timeout and so on...

0.3.3.2 Member Enumeration Documentation

anonymous enum [protected, inherited]

Enumerator:

fifoSize fifosize of the putback fifo

Definition at line 71 of file iobase.h.

0.3.3.3 Member Function Documentation

const charx ctb::GpibDevice::ClassName () [inline, virtual]

returns the name of the class instance. You find this useful, if you handle different devices like a
serial port or a gpib device via a IOBase pointer.

Returns:

name of the class.

Reimplemented from ctb::IOBase.

Definition at line 286 of file gpib.h.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

24

int ctb::IOBase::Close () [inline, inherited]

Closed the interface. Internally it calls the CloseDevice() method, which must be defined in the
derivated class.

Returns:

Zero on success, or -1 if an error occurred.

Definition at line 123 of file iobase.h.
References ctb::I0Base::CloseDevice().

Referenced by ~GpibDevice(), and ctb::SerialPort::~SerialPort().

int ctb::GpibDevice::CloseDevice () [protected, virtual]

Close the interface (internally the file descriptor, which was connected with the interface).

Returns:

Zero on success, otherwise -1.

Implements ctb::I0OBase.

Definition at line 73 of file gpib.cpp.
References m_board, and m_hd.
Referenced by OpenDevice().

int ctb::GpibDevice::FindListeners (int board = 0) [static]

FindListener returns all listening devices connected to the GPIB bus of the given board. This
function is not member of the GPIB class, becauce it should do it’s job before you open any GPIB
connection.

Parameters:

board the board nummber. Default is the first board (=0). Valid board numbers are 0 and 1.

Returns:

-1 if an error occurred, otherwise a setting bit for each listener address. Bit0 is always 0
(address 0 isn’t valid, Bit1 means address 1, Bit2 address 2 and so on...

Definition at line 228 of file gpib.cpp.

virtual const charx ctb:GpibDevice::GetErrorDescription (int error) [inline, virtual]

returns a more detail description of the given error number.

Parameters:

error the occured error number

Returns:

null terminated string with the error description

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 25

Definition at line 293 of file gpib.h.
References GetErrorString().

virtual const charx ctb::GpibDevice::GetErrorNotation (int error) [inline, virtual]

returns a short notation like 'EABO’ of the given error number.

Parameters:

error the occured error number

Returns:

null terminated string with the short error notation

Definition at line 302 of file gpib.h.

References GetErrorString().

const char * ctb:GpibDevice::GetErrorString (int error, bool detailed) [protected,
virtual]

returns a short notation or more detail description of the given GPIB error number.

Parameters:

error the occured GPIB error

detailed true for a more detailed description, false otherwise
Returns:

a null terminated string with the short or detailed error message.

Definition at line 86 of file gpib.cpp.
References ctb::gpibErrors.

Referenced by GetErrorDescription(), and GetErrorNotation().

virtual charx ctb::GpibDevice::GetSettingsAsString () [inline, virtual]

request the current settings of the connected gpib device as a null terminated string.

Returns:

the settings as a string like "Adr: (1,0) to:1ms’

Definition at line 310 of file gpib.h.
References ctb::Gpib_DCS::GetSettings(), and m_dcs.

int ctb::GpibDevice:Ibrd (char * buf, size_t len)
This is only for internal usage.
Definition at line 102 of file gpib.cpp.

References m_hd.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

26

int ctb::GpibDevice:Ibwrt (char * buf, size_t len)
This is only for internal usage.

Definition at line 108 of file gpib.cpp.

References m_hd.

int ctb::GpibDevice::Ioctl (int cnd, void * args) [virtual]

Many operating characteristics are only possible for special devices. To avoid the need of a lot of
different functions and to give the user a uniform interface, all this special operating instructions
will covered by one loctl methode (like the linux ioctl call). The loctl command (cmd) has encoded
in it whether the argument is an in parameter or out parameter, and the size of the argument args
in bytes. Macros and defines used in specifying an ioctl request are located in iobase.h and the
header file for the derivated device (for example in gpib.h).

Parameters:

cmd one of Gpibloctls specify the ioctl request.
args is a typeless pointer to a memory location, where loctl reads the request arguments or

write the results. Please note, that an invalid memory location or size involving a buffer
overflow or segmention fault!

Reimplemented from ctb::I0OBase.

Definition at line 113 of file gpib.cpp.

References ctb::CTB_GPIB_GET_EOS_CHAR, ctb::CTB_GPIB_GET_EOS_MODE, ctb::CTB_-
GPIB_GETERR, ctb::CTB_GPIB_GETLINES, ctb::CTB_GPIB_GETRSP, ctb::CTB_GPIB_-
GETSTA, ctb::CTB_GPIB_GTL, ctb::CTB_GPIB_REN, ctb::CTB_GPIB_RESET_BUS,
ctb::CTB_GPIB_SET EOS CHAR, cth::CTB_GPIB_SET EOS MODE, «ctb::CTB_GPIB_-
SETTIMEOUT, ctb::CTB_RESET, ctb::GpibTimeout1000s, ctb::GpibTimeout100ms, ctb::Gpib-
Timeout100s, ctb::GpibTimeout10ms, ctb::GpibTimeout10s, ctb::GpibTimeoutims, ctb::Gpib-
Timeout1s, ctb::GpibTimeout300ms, ctb::GpibTimeout300s, ctb::GpibTimeout30ms, ctb::Gpib-
Timeout30s, ctb::GpibTimeout3ms, ctb::GpibTimeout3s, ctb::GpibTimeoutNone, ctb::Gpib_-
DCS::m_address1, m_board, m_dcs, ctb::Gpib_DCS::m_eosChar, ctb::Gpib_DCS::m_eosMode,
m_error, m_hd, and m_state.

int ctb::GpibDevice:IsOpen () [inline, virtual]
Returns the current state of the device.
Returns:

1 if device is valid and open, otherwise 0

Implements ctb::I0OBase.
Definition at line 339 of file gpib.h.

References m_hd.

int ctb::I0Base::Open (const char * devname, void * dcs = 0L) [inline, inherited]

Parameters:

devname name of the interface, we want to open

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 27

dcs a untyped pointer to a device control struct. If he is NULL, the default device parameter
will be used.
Returns:

the new file descriptor, or -1 if an error occurred

The pointer dcs will be used for special device dependent settings. Because this is very specific,
the struct or destination of the pointer will be defined by every device itself. (For example: a
serial device class should refer things like parity, word length and count of stop bits, a IEEE class
adress and EOS character).

Definition at line 163 of file iobase.h.

References ctb::IOBase::OpenDevice().

int ctb::GpibDevice::Open (const char * devname, int address)

Opens a GPIB device in a user likely way. Insteed of using the Device Control Struct just input
your parameter in a more intuitive manner.

Parameters:

devname the name of the GPIB controler like GPIB1 or GPIB2
address the address of the connected device (1...31)

Returns:

the new file descriptor, or -1 if an error occurred

Definition at line 258 of file gpib.cpp.
References ctb::Gpib_DCS::m_address1, m_dcs, and OpenDevice().

int ctb:GpibDevice::OpenDevice (const char * devname, void * dcs) [protected,
virtual]

Open the interface (internally to request a file descriptor for the given interface). The second
parameter is a undefined pointer of a Gpib_DCS data struct.
Parameters:

devname the name of the GPIB device, GPIB1 means the first GPIB controller, GPIB2 the
second (if available).

dcs untyped pointer of advanced device parameters,

See also:
struct Gpib_DCS (data struct for the gpib device)

Returns:

Zero on success, otherwise -1

Implements ctb::IOBase.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

28

Definition at line 266 of file gpib.cpp.

References CloseDevice(), ctb::GpibTimeout1000s, ctb::GpibTimeout10us, ctb::Gpib_DCS::m_-
address1, ctb::Gpib_DCS::m_address2, m_board, m_count, m_dcs, ctb::Gpib_DCS::m_eos-
Char, ctb::Gpib_DCS::m_eosMode, ctb::Gpib_DCS::m_eot, m_error, m_hd, m_state, and
ctb::Gpib_DCS::m_timeout.

Referenced by Open().

int ctb::IOBase::PutBack (charch) [inline, inherited]

In some circumstances you want to put back a already readed byte (for instance, you have over-
readed it and like to parse the recieving bytes again). The internal fifo stores fifoSize characters
until you have to read again.

Parameters:

ch the character to put back in the input stream

Returns:

1, if successful, otherwise 0

Definition at line 176 of file iobase.h.
References ctb::I0Base::m_fifo, and ctb::Fifo::put().
Referenced by ctb::I0Base::ReadUntilEOS().

int ctb::GpibDevice::Read (char = buf, size_t len) [virtual]

Read attempt to read len bytes from the interface into the buffer starting with buf. Read never
blocks. If there are no bytes for reading, Read returns zero otherwise the count of bytes been
readed.

Parameters:

buf starting adress of the buffer
len count of bytes, we want to read

Returns:

-1 on fails, otherwise the count of readed bytes

Implements ctb::I0OBase.
Definition at line 318 of file gpib.cpp.

References ctb::Fifo:iitems(), m_count, m_error, ctb::IOBase::m_fifo, m_hd, m_state, and
ctb::Fifo::read().

int ctb::I0OBase::ReadUntilEOS (char & readbuf, size_t « readedBytes, char x eosString = "\n",
long timeout_in_ms = 1000L, char quota = 0) [virtual, inherited]

ReadUntilEos read bytes from the interface until the EOS string was received or a timeout occurs.
ReadUntilEos returns the count of bytes been readed. The received bytes are stored on the heap
point by the readbuf pointer and must delete by the caller.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 29

Parameters:
readbuf points to the start of the readed bytes. You must delete them, also if you received
no byte.
readedBytes A pointer to the variable that receives the number of bytes read.
eosString is the null terminated end of string sequence. Default is the linefeed character.
timeout_in_ms the function returns after this time, also if no eos occured (default is 1s).
quota defines a character between those an EOS doesn’t terminate the string

Returns:

1 on sucess (the operation ends successfull without a timeout), 0 if a timeout occurred and
-1 otherwise

Definition at line 77 of file iobase.cpp.

References ctb::IOBase::PutBack(), ctb::I0OBase::Read(), ctb::sleepms(), and ctb::Timer::start().

int ctb:IOBase:Readv (char = buf, size_t len, int x timeout_flag, bool nice = false)
[inherited]

readv() attempts to read up to len bytes from the interface into the buffer starting at buf. readv()
is blocked till len bytes are readed or the timeout_flag points on a int greater then zero.

Parameters:

buf starting adress of the buffer
len count bytes, we want to read

timeout_flag a pointer to an integer. If you don’t want any timeout, you given a null pointer
here. But think of it: In this case, this function comes never back, if there a not enough
bytes to read.

nice if true go to sleep for one ms (reduce CPU last), if there is no byte available (default is
false)

Definition at line 51 of file iobase.cpp.

References ctb::I0OBase::Read(), and ctb::sleepms().

int ctb::I0OBase::Readv (char * buf, size_t len, unsigned int timeout_in_ms) [inherited]

readv() attempts to read up to len bytes from the interface into the buffer starting at buf. readv()
is blocked till len bytes are readed or the given timeout in milliseconds was reached.

Parameters:

buf starting address of the buffer
len count bytes, we want to read
timeout_in_ms in milliseconds. If you don’t want any timeout, you give the wxTIMEOUT _-
INFINITY here. But think of it: In this case, this function never returns if there a not
enough bytes to read.
Returns:

the number of data bytes successfully read

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

30

Definition at line 19 of file iobase.cpp.

References ctb::IOBase::Read(), and ctb::sleepmsy().

int ctb::GpibDevice::Write (char * buf, size_t len) [virtual]
Write writes up to len bytes from the buffer starting with buf into the interface.

Parameters:

buf start adress of the buffer
len count of bytes, we want to write

Returns:

on success, the number of bytes written are returned (zero indicates nothing was written).
On error, -1 is returned.

Implements ctb::I0OBase.
Definition at line 330 of file gpib.cpp.

References m_count, m_error, m_hd, and m_state.

int ctb:IOBase:Writev (char * buf, size_t len, int x timeout_flag, bool nice = false)
[inherited]

Writev() writes up to len bytes to the interface from the buffer, starting at buf. Also Writev() blocks
till all bytes are written or the timeout_flag points to an integer greater then zero.

Parameters:

buf starting adress of the buffer
len count bytes, we want to write

timeout_flag a pointer to an integer. You also can give a null pointer here. This blocks, til all
data is writen.

nice if true go to sleep for one ms (reduce CPU last), if there is no byte available (default is
false)

Definition at line 188 of file iobase.cpp.

References ctb::sleepms(), and ctb::IOBase::Write().

int ctb::I0Base::Writev (char * buf, size_t len, unsigned int timeout_in_ms) [inherited]

Writev() writes up to len bytes to the interface from the buffer, starting at buf. Also Writev() blocks
till all bytes are written or the given timeout in milliseconds was reached.

Parameters:

buf starting address of the buffer
len count bytes, we want to write

timeout_in_ms timeout in milliseconds. If you give wxTIMEOUT_INFINITY here, the func-
tion blocks, till all data was written.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 31

Returns:

the number of data bytes successfully written.

Definition at line 158 of file iobase.cpp.

References ctb::sleepms(), ctb::Timer::start(), and ctb::I0OBase::Write().

0.3.3.4 Member Data Documentation

int ctb::GpibDevice:m_board [protected]

the internal board identifier, O for the first gpib controller, 1 for the second one
Definition at line 230 of file gpib.h.

Referenced by CloseDevice(), GpibDevice(), loctl(), and OpenDevice().

int ctb::GpibDevice:m_count [protected]

the count of data read or written

Definition at line 245 of file gpib.h.

Referenced by GpibDevice(), OpenDevice(), Read(), and Write().

Gpib_DCS ctb::GpibDevice:m_dcs [protected]

contains the internal settings of the GPIB connection like address, timeout, end of string character
and so one...

Definition at line 250 of file gpib.h.
Referenced by GetSettingsAsString(), loctl(), Open(), and OpenDevice().

int ctb::GpibDevice:m_error [protected]

the internal GPIB error number

Definition at line 243 of file gpib.h.

Referenced by GpibDevice(), loctl(), OpenDevice(), Read(), and Write().

Fifox ctb::IOBase:m_fifo [protected, inherited]

internal fifo (first in, first out queue) to put back already readed bytes into the reading stream.
After put back a single byte or sequence of characters, you can read them again with the next
Read call.

Definition at line 70 of file iobase.h.

Referenced by ctb::IOBase::I0Base(), ctb::IOBase::PutBack(), ctb::SerialPort::Read(), Read),
and ctb::lI0OBase::~IOBase().

int ctb::GpibDevicezm_hd [protected]

the file descriptor of the connected gpib device

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

32

Definition at line 235 of file gpib.h.

Referenced by CloseDevice(), GpibDevice(), lord(), lowrt(), loctl(), 1sOpen(), OpenDevice(),
Read(), and Write().

int ctb::GpibDevice:m_state [protected]

contains the internal conditions of the GPIB communication like GPIB error, timeout and so on...
Definition at line 241 of file gpib.h.

Referenced by GpibDevice(), loctl(), OpenDevice(), Read(), and Write().

The documentation for this class was generated from the following files:
» gpib.h
* gpib.cpp

0.3.4 ctb::I0OBase Class Reference

#include <iobase.h>
Inheritance diagram for ctb::I0OBase:

ctb::IOBase

ctb::GpibDevice | |ctb::SeriaIPort_x |

ctb::SerialPort

Collaboration diagram for ctb::IOBase:

Imififo

ctb::IOBase

0.3.4.1 Detailed Description

An abstract class for different interfaces. The idea behind this: Similar to the virtual file system
this class defines a lot of preset member functions, which the derivate classes must be overload.
In the main thing these are: open a interface (such as RS232), reading and writing non blocked
through the interface and at last, close it. For special interface settings the method ioctl was
defined. (control interface). ioctl covers some interface dependent settings like switch on/off the
RS232 status lines and must also be defined from each derivated class.

Definition at line 61 of file iobase.h.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 33

Public Member Functions

« virtual const char x ClassName ()
A little helper function to detect the class name.

+ int Close ()
» I0OBase ()
« virtual int loctl (int cmd, void xargs)
» virtual int IsOpen ()=0
« int Open (const char xdevname, void xdcs=0L)
* int PutBack (char ch)
In some circumstances you want to put back a already readed byte (for instance, you have over-

readed it and like to parse the recieving bytes again). The internal fifo stores fifoSize characters
until you have to read again.

« virtual int Read (char xbuf, size_t len)=0
« virtual int ReadUntilEOS (char x&readbuf, size_t «xreadedBytes, char xeosString="\n", long
timeout_in_ms=1000L, char quota=0)

ReadUntilEos read bytes from the interface until the EOS string was received or a timeout occurs.
ReadUntilEos returns the count of bytes been readed. The received bytes are stored on the heap
point by the readbuf pointer and must delete by the caller.

+ int Readv (char «buf, size_t len, int «timeout_flag, bool nice=false)

readv() attempts to read up to len bytes from the interface into the buffer starting at buf. readv() is
blocked till len bytes are readed or the timeout _flag points on a int greater then zero.

+ int Readv (char «buf, size_t len, unsigned int timeout_in_ms)

readv() attempts to read up to len bytes from the interface into the buffer starting at buf. readv() is
blocked till len bytes are readed or the given timeout in milliseconds was reached.

« virtual int Write (char xbuf, size_t len)=0

* int Writev (char «buf, size_t len, int «timeout_flag, bool nice=false)
* int Writev (char «buf, size_t len, unsigned int timeout_in_ms)

* virtual ~lIOBase ()

Protected Types

» enum { fifoSize = 256 }

Protected Member Functions

» virtual int CloseDevice ()=0
« virtual int OpenDevice (const char xdevname, void xdcs=0L)=0

Protected Attributes

« Fifo + m_fifo

internal fifo (first in, first out queue) to put back already readed bytes into the reading stream. After
put back a single byte or sequence of characters, you can read them again with the next Read
call.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

34

0.3.4.2 Member Enumeration Documentation
anonymous enum [protected]

Enumerator:

fifoSize fifosize of the putback fifo

Definition at line 71 of file iobase.h.

0.3.4.3 Constructor & Destructor Documentation

ctb::I0Base::I0OBase () [inline]
Default constructor
Definition at line 103 of file iobase.h.

References fifoSize, and m_fifo.

virtual ctb::IOBase::~IOBase () [inline, wvirtual]
Default destructor
Definition at line 110 of file iobase.h.

References m_fifo.

0.3.4.4 Member Function Documentation

virtual const charx ctb::I0OBase::ClassName () [inline, virtuall

A little helper function to detect the class name.

Returns:

the name of the class

Reimplemented in ctb::GpibDevice, and ctb::SerialPort_x.

Definition at line 117 of file iobase.h.

int ctb::IOBase::Close () [inline]

Closed the interface. Internally it calls the CloseDevice() method, which must be defined in the
derivated class.

Returns:

Zero on success, or -1 if an error occurred.

Definition at line 123 of file iobase.h.
References CloseDevice().

Referenced by ctb::GpibDevice::~GpibDevice(), and ctb::SerialPort::~SerialPort().

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 35

virtual int ctb::I0Base::CloseDevice () [protected, pure virtual]

Close the interface (internally the file descriptor, which was connected with the interface).

Returns:

Zero on success, otherwise -1.

Implemented in ctb::GpibDevice, and ctb::SerialPort.

Referenced by Close().

virtual int ctb::I0Base::Ioctl (int cmnd, void * args) [inline, virtual]

In this method we can do all things, which are different between the discrete interfaces. The
method is similar to the C ioctl function. We take a command number and a integer pointer as
command parameter. An example for this is the reset of a connection between a PC and one ore
more other instruments. On serial (RS232) connections mostly a break will be send, GPIB on
the other hand defines a special line on the GPIB bus, to reset all connected devices. If you only
want to reset your connection, you should use the loctl methode for doing this, independent of
the real type of the connection.

Parameters:

cmd a command identifier, (under Posix such as TIOCMBIS for RS232 interfaces), IOBase-
loctls

args typeless parameter pointer for the command above.

Returns:

Zero on success, or -1 if an error occurred.

Reimplemented in ctb::GpibDevice, ctb::SerialPort_x, and ctb::SerialPort.

Definition at line 142 of file iobase.h.

virtual int ctb::IOBase:IsOpen () [pure virtual]
Returns the current state of the device.
Returns:

1 if device is valid and open, otherwise 0

Implemented in ctb::GpibDevice, and ctb::SerialPort.

int ctb::I0Base::Open (const char * devname, void * des = 0L) [inline]

Parameters:

devname name of the interface, we want to open

dcs a untyped pointer to a device control struct. If he is NULL, the default device parameter
will be used.

Returns:

the new file descriptor, or -1 if an error occurred

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

36

The pointer dcs will be used for special device dependent settings. Because this is very specific,
the struct or destination of the pointer will be defined by every device itself. (For example: a
serial device class should refer things like parity, word length and count of stop bits, a IEEE class
adress and EOS character).

Definition at line 163 of file iobase.h.

References OpenDevice().

virtual int ctb:IOBase::OpenDevice (const char * devname, void * dcs = 0L) [protected,
pure virtual]

Open the interface (internally to request a file descriptor for the given interface). The second pa-
rameter is a undefined pointer of a device dependent data struct. It must be undefined, because
different devices have different settings. A serial device like the com ports points here to a data
struct, includes information like baudrate, parity, count of stopbits and wordlen and so on. An-
other devices (for example a IEEE) needs a adress and EOS (end of string character) and don’t
use baudrate or parity.

Parameters:

devname the name of the device, presents the given interface. Under windows for example
COM1, under Linux /dev/cua0. Use wxCOMn to avoid plattform depended code (n is
the serial port number, beginning with 1).

des untyped pointer of advanced device parameters,

See also:

struct dcs_devCUA (data struct for the serail com ports)

Returns:

Zero on success, otherwise -1

Implemented in ctb::GpibDevice, and ctb::SerialPort.

Referenced by ctb::SerialPort_x::Open(), and Open().

int ctb::IOBase::PutBack (charch) [inline]

In some circumstances you want to put back a already readed byte (for instance, you have over-
readed it and like to parse the recieving bytes again). The internal fifo stores fifoSize characters
until you have to read again.

Parameters:

ch the character to put back in the input stream

Returns:

1, if successful, otherwise 0

Definition at line 176 of file iobase.h.
References m_fifo, and ctb::Fifo::put().
Referenced by ReadUntilEOS().

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 37

virtual int ctb::IOBase::Read (char * buf, size_t len) [pure virtuall

Read attempt to read len bytes from the interface into the buffer starting with buf. Read never
blocks. If there are no bytes for reading, Read returns zero otherwise the count of bytes been
readed.

Parameters:
buf starting adress of the buffer
len count of bytes, we want to read

Returns:

-1 on fails, otherwise the count of readed bytes

Implemented in ctb::GpibDevice, and ctb::SerialPort.
Referenced by ReadUntilEOS(), and Readv().

int ctb::I0OBase::ReadUntilEOS (char & readbuf, size_t « readedBytes, char x eosString = "\n",
long timeout_in_ms = 1000L, char quota = 0) [virtual]

ReadUntilEos read bytes from the interface until the EOS string was received or a timeout occurs.
ReadUntilEos returns the count of bytes been readed. The received bytes are stored on the heap
point by the readbuf pointer and must delete by the caller.

Parameters:

readbuf points to the start of the readed bytes. You must delete them, also if you received
no byte.

readedBytes A pointer to the variable that receives the number of bytes read.

eosString is the null terminated end of string sequence. Default is the linefeed character.
timeout_in_ms the function returns after this time, also if no eos occured (default is 1s).
quota defines a character between those an EOS doesn’t terminate the string

Returns:

1 on sucess (the operation ends successfull without a timeout), 0 if a timeout occurred and
-1 otherwise

Definition at line 77 of file iobase.cpp.

References PutBack(), Read(), ctb::sleepms(), and ctb::Timer::start().

int ctb::I0OBase::Readv (char buf, size_t len, int x timeout_flag, bool nice = false)

readv() attempts to read up to len bytes from the interface into the buffer starting at buf. readv()
is blocked till len bytes are readed or the timeout_flag points on a int greater then zero.

Parameters:
buf starting adress of the buffer

len count bytes, we want to read

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

38

timeout_flag a pointer to an integer. If you don’t want any timeout, you given a null pointer
here. But think of it: In this case, this function comes never back, if there a not enough
bytes to read.

nice if true go to sleep for one ms (reduce CPU last), if there is no byte available (default is
false)

Definition at line 51 of file iobase.cpp.

References Read(), and ctb::sleepms().

int ctb::I0Base::Readv (char * buf, size_t len, unsigned int timeout_in_ms)

readv() attempts to read up to len bytes from the interface into the buffer starting at buf. readv()
is blocked till len bytes are readed or the given timeout in milliseconds was reached.

Parameters:

buf starting address of the buffer
len count bytes, we want to read

timeout_in_ms in milliseconds. If you don’'t want any timeout, you give the wxTIMEOUT_-
INFINITY here. But think of it: In this case, this function never returns if there a not
enough bytes to read.

Returns:

the number of data bytes successfully read

Definition at line 19 of file iobase.cpp.

References Read(), and ctb::sleepms().

virtual int ctb::I0Base::Write (char * buf, size_t len) [pure virtuall

Write writes up to len bytes from the buffer starting with buf into the interface.

Parameters:

buf start adress of the buffer
len count of bytes, we want to write

Returns:

on success, the number of bytes written are returned (zero indicates nothing was written).
On error, -1 is returned.

Implemented in ctb::GpibDevice, and ctb::SerialPort.
Referenced by Writev().

int ctb::10Base::Writev (char * buf, size_t len, int * timeout_flag, bool nice = false)

Writev() writes up to len bytes to the interface from the buffer, starting at buf. Also Writev() blocks
till all bytes are written or the timeout_flag points to an integer greater then zero.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 39

Parameters:

buf starting adress of the buffer
len count bytes, we want to write

timeout_flag a pointer to an integer. You also can give a null pointer here. This blocks, til all
data is writen.

nice if true go to sleep for one ms (reduce CPU last), if there is no byte available (default is
false)
Definition at line 188 of file iobase.cpp.

References ctb::sleepms(), and Write().

int ctb::10Base::Writev (char * buf, size_t len, unsigned int timeout_in_ms)

Writev() writes up to len bytes to the interface from the buffer, starting at buf. Also Writev() blocks
till all bytes are written or the given timeout in milliseconds was reached.

Parameters:

buf starting address of the buffer
len count bytes, we want to write
timeout_in_ms timeout in milliseconds. If you give wxTIMEOUT_INFINITY here, the func-

tion blocks, till all data was written.
Returns:

the number of data bytes successfully written.

Definition at line 158 of file iobase.cpp.

References ctb::sleepms(), ctb::Timer::start(), and Write().

0.3.4.5 Member Data Documentation

Fifox ctb::IOBase:m_fifo [protected]

internal fifo (first in, first out queue) to put back already readed bytes into the reading stream.
After put back a single byte or sequence of characters, you can read them again with the next
Read call.

Definition at line 70 of file iobase.h.

Referenced by I0Base(), PutBack(), ctb::SerialPort::Read(), ctb::GpibDevice::Read(), and
~|OBase().

The documentation for this class was generated from the following files:

* iobase.h
* iobase.cpp

0.3.5 ctb::SerialPort Class Reference

#include <serport.h>

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

40

Inheritance diagram for ctb::SerialPort:

ctb::IOBase

ctb::SerialPort_x
ctb::SerialPort

Collaboration diagram for ctb::SerialPort:

m_fifo

| ctb::lIOBase | ctb::SerialPort_DCS

/mfdcs

ctb::SerialPort_x
[

ctb::SerialPort

0.3.5.1 Detailed Description
the linux version

Definition at line 23 of file linux/serport.h.

Public Types

» enum FlowControl { NoFlowControl, RtsCtsFlowControl, XonXoffFlowControl }
Specifies the flow control.

Public Member Functions

int ChangeLineState (SerialLineState flags)
change the linestates according to which bits are set/unset in flags.

« const char x ClassName ()

returns the name of the class instance. You find this useful, if you handle different devices like a
serial port or a gpib device via a IOBase pointer.

int Close ()
int ClrLineState (SerialLineState flags)

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 41

turn off status lines depending upon which bits (DSR and/or RTS) are set in flags.

int GetLineState ()
Read the line states of DCD, CTS, DSR and RING.

virtual char « GetSettingsAsString ()
request the current settings of the connected serial port as a null terminated string.

int loctl (int cmd, void xargs)

Many operating characteristics are only possible for special devices. To avoid the need of a lot of
different functions and to give the user a uniform interface, all this special operating instructions
will covered by one loctl methode (like the linux ioctl call). The loctl command (cmd) has encoded
in it whether the argument is an in parameter or out parameter, and the size of the argument args
in bytes. Macros and defines used in specifying an ioctl request are located in iobase.h and the
header file for the derivated device (for example in serportx.h).

int IsOpen ()

int Open (const char «devname, void xdcs=0L)

int Open (const int portnumber, int baudrate, const char xprotocol="8N1", FlowControl flow-
Control=NoFlowControl)

Opens the serial port with the given number.

int Open (const char xportname, int baudrate, const char xprotocol="8N1", FlowControl
flowControl=NoFlowControl)

Opens a serial port in a user likely way. Insteed of using the Device Control Struct just input your
parameter in a more intuitive manner.

int PutBack (char ch)

In some circumstances you want to put back a already readed byte (for instance, you have over-
readed it and like to parse the recieving bytes again). The internal fifo stores fifoSize characters
until you have to read again.

int Read (char *buf, size_t len)
virtual int ReadUntilEOS (char x&readbuf, size_t xreadedBytes, char xeosString="\n", long
timeout_in_ms=1000L, char quota=0)

ReadUntilEos read bytes from the interface until the EOS string was received or a timeout occurs.
ReadUntilEos returns the count of bytes been readed. The received bytes are stored on the heap
point by the readbuf pointer and must delete by the caller.

int Readv (char xbuf, size_t len, int xtimeout_flag, bool nice=false)

readv() attempts to read up to len bytes from the interface into the buffer starting at buf. readv() is
blocked till len bytes are readed or the timeout _flag points on a int greater then zero.

int Readv (char xbuf, size_t len, unsigned int timeout_in_ms)

readv() attempts to read up to len bytes from the interface into the buffer starting at buf. readv() is
blocked till len bytes are readed or the given timeout in milliseconds was reached.

int SendBreak (int duration)
Sendbreak transmits a continuous stream of zero-valued bits for a specific duration.

SerialPort ()
int SetBaudrate (int baudrate)

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

42

Set the baudrate (also non-standard) Please note: Non-standard baudrates like 70000 are not
supported by each UART and depends on the RS232 chipset you apply.

* int SetlLineState (SerialLineState flags)
turn on status lines depending upon which bits (DSR and/or RTS) are set in flags.

* int SetParityBit (bool parity)

Set the parity bit to a firm state, for instance to use the parity bit as the ninth bit in a 9 bit dataword
communication.

* int Write (char «buf, size_t len)

* int Writev (char «buf, size_t len, int «timeout_flag, bool nice=false)
* int Writev (char «buf, size_t len, unsigned int timeout_in_ms)

» ~SerialPort ()

Static Public Member Functions

» static bool IsStandardRate (int rate)

check the given baudrate against a list of standard rates. \ return true, if the baudrate is a standard
value, false otherwise

Protected Types

» enum { fifoSize = 256 }

Protected Member Functions

» speed_t AdaptBaudrate (int baud)

adaptor member function, to convert the plattform independent type wxBaud into a linux conform
value.

int CloseDevice ()
int OpenDevice (const char xdevname, void *dcs)
int SetBaudrateAny (int baudrate)

internal member function to set an unusal (non-standard) baudrate. Called by SetBaudrate.

int SetBaudrateStandard (int baudrate)
internal member function to set a standard baudrate. Called by SetBaudrate.

Protected Attributes

* intfd
under Linux, the serial ports are normal file descriptor

+ serial_icounter_struct save_info last_info

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 43

The Linux serial driver summing all breaks, framings, overruns and parity errors for each port
during system runtime. Because we only need the errors during a active connection, we must
save the actual error numbers in this separate structurs.

SerialPort DCS m_dcs
contains the internal settings of the serial port like baudrate, protocol, wordlen and so on.

» char m_devname [SERIALPORT_NAME_LEN]
contains the internal (os specific) name of the serial device.

Fifo « m_fifo

internal fifo (first in, first out queue) to put back already readed bytes into the reading stream. After
put back a single byte or sequence of characters, you can read them again with the next Read
call.

 termios t save_t

Linux defines this struct termios for controling asynchronous communication. t covered the active
settings, save_t the original settings.

0.3.5.2 Member Enumeration Documentation
anonymous enum [protected, inherited]

Enumerator:
fifoSize fifosize of the putback fifo

Definition at line 71 of file iobase.h.

enum ctb::SerialPort_x::FlowControl [inherited]

Specifies the flow control.

Enumerator:

NoFlowControl No flow control at all
RtsCtsFlowControl Enable RTS/CTS hardware flow control
XonXoffFlowControl Enable XON/XOFF protocol

Definition at line 287 of file serportx.h.

0.3.5.3 Member Function Documentation

speed_t ctb::SerialPort::AdaptBaudrate (int baud) [protected]

adaptor member function, to convert the plattform independent type wxBaud into a linux conform
value.

Parameters:

baud the baudrate as wxBaud type

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

44

Returns:

speed_t linux specific data type, defined in termios.h

Definition at line 56 of file serport.cpp.

Referenced by OpenDevice(), and SetBaudrateStandard().

int ctb::SerialPort::ChangeLineState (SerialLineState flags) [virtual]

change the linestates according to which bits are set/unset in flags.

Parameters:
flags valid line flags are SERIAL_LINESTATE_DSR and/or SERIAL_LINESTATE_RTS

Returns:

Zero on success, -1 if an error occurs

Implements ctb::SerialPort_x.
Definition at line 101 of file serport.cpp.

References fd.

const charx ctb::SerialPort_x::ClassName () [inline, virtual, inherited]

returns the name of the class instance. You find this useful, if you handle different devices like a
serial port or a gpib device via a IOBase pointer.

Returns:

name of the class.

Reimplemented from ctb::IOBase.

Definition at line 304 of file serportx.h.

int ctb::IOBase::Close () [inline, inherited]

Closed the interface. Internally it calls the CloseDevice() method, which must be defined in the
derivated class.

Returns:

zero on success, or -1 if an error occurred.

Definition at line 123 of file iobase.h.
References ctb::I0OBase::CloseDevice().
Referenced by ctb::GpibDevice::~GpibDevice(), and ~SerialPort().

int ctb::SerialPort::CloseDevice () [protected, virtual]

Close the interface (internally the file descriptor, which was connected with the interface).

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 45

Returns:

Zero on success, otherwise -1.

Implements ctb::I0OBase.
Definition at line 79 of file serport.cpp.

References fd.
int ctb::SerialPort::ClrLineState (SerialLineState flags) [virtual]
turn off status lines depending upon which bits (DSR and/or RTS) are set in flags.

Parameters:
flags valid line flags are SERIAL_LINESTATE_DSR and/or SERIAL_LINESTATE_RTS

Returns:

Zero on success, -1 if an error occurs

Implements ctb::SerialPort_x.
Definition at line 109 of file serport.cpp.

References fd.
int ctb::SerialPort::GetLineState () [virtual]
Read the line states of DCD, CTS, DSR and RING.

Returns:

returns the appropriate bits on sucess, otherwise -1

Implements ctb::SerialPort_x.

Definition at line 114 of file serport.cpp.

References fd, and ctb::LinestateNull.

virtual charx ctb::SerialPort_x::GetSettingsAsString () [inline, virtual, inherited]

request the current settings of the connected serial port as a null terminated string.

Returns:
the settings as a string like '8N1 115200’

Definition at line 335 of file serportx.h.

References ctb::SerialPort_DCS::GetSettings(), and ctb::SerialPort_x::m_dcs.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

46

int ctb::SerialPort::Ioctl (int cmd, void * args) [virtuall

Many operating characteristics are only possible for special devices. To avoid the need of a lot of
different functions and to give the user a uniform interface, all this special operating instructions
will covered by one loctl methode (like the linux ioctl call). The loctl command (cmd) has encoded
in it whether the argument is an in parameter or out parameter, and the size of the argument args
in bytes. Macros and defines used in specifying an ioctl request are located in iobase.h and the
header file for the derivated device (for example in serportx.h).

Parameters:

cmd one of SerialPortloctls specify the ioctl request.
args is a typeless pointer to a memory location, where loctl reads the request arguments or

write the results. Please note, that an invalid memory location or size involving a buffer
overflow or segmention fault!

Reimplemented from ctb::SerialPort_x.

Definition at line 137 of file serport.cpp.

References ctb::CTB_RESET, ctb::CTB_SER_GETBRK, ctb:CTB_SER_GETEINFO,
ctb::CTB_SER_GETFRM, ctb::CTB_SER_GETINQUE, ctb::CTB_SER_GETOVR, ctb::CTB_-
SER_GETPAR, ctb::CTB_SER_SETPAR, fd, last_info, SendBreak(), and SetParityBit().

int ctb::SerialPort::IsOpen () [virtual]

Returns the current state of the device.

Returns:

1 if device is valid and open, otherwise 0

Implements ctb::I0OBase.
Definition at line 190 of file serport.cpp.

References fd.

bool ctb::SerialPort_x::IsStandardRate (int rate) [static, inherited]

check the given baudrate against a list of standard rates. \ return true, if the baudrate is a
standard value, false otherwise

Definition at line 86 of file serportx.cpp.

Referenced by OpenDevice(), and SetBaudrate().

int ctb::I0Base::Open (const char * devname, void * dcs = 0L) [inline, inherited]

Parameters:

devname name of the interface, we want to open

dcs a untyped pointer to a device control struct. If he is NULL, the default device parameter
will be used.

Returns:

the new file descriptor, or -1 if an error occurred

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 47

The pointer dcs will be used for special device dependent settings. Because this is very specific,
the struct or destination of the pointer will be defined by every device itself. (For example: a
serial device class should refer things like parity, word length and count of stop bits, a IEEE class
adress and EOS character).

Definition at line 163 of file iobase.h.

References ctb::I0Base::OpenDevice().

int ctb::SerialPort_x::Open (const int portnumber, int baudrate, const char * protocol = "8N1",
FlowControl flowControl = NoFlowControl) [inherited]

Opens the serial port with the given number.

Note:

The port numbering starts with 1 (COM1 for windows and /dev/ttySO0 for Linux. Please note,
that USB to RS232 converter in Linux are named as /dev/ttyUSBx and from there have to
opened with their device name!

Parameters:
number of the serial port count from 1
baudrate any baudrate, also an unusual one, if your serial device support them

protocol a string with the number of databits (5...8), the parity setting
(N=None,0=0dd,E=Even,M=Mark,S=Space), also in lower case, and the count
of stopbits (1...2)

flowControl one of NoFlowControl, RtsCtsFlowControl or XonXoffFlowControl.

Returns:
the new file descriptor, or -1 if an error occurred

Definition at line 63 of file serportx.cpp.

References ctb::SerialPort_x::Open().

int ctb::SerialPort_x::Open (const char « portname, int baudrate, const char * protocol = "8N1",
FlowControl flowControl = NoFlowControl) [inherited]

Opens a serial port in a user likely way. Insteed of using the Device Control Struct just input your
parameter in a more intuitive manner.

Parameters:

portname the name of the serial port
baudrate any baudrate, also an unusual one, if your serial device support them

protocol a string with the number of databits (5...8), the parity setting
(N=None,0=0dd,E=Even,M=Mark,S=Space), also in lower case, and the count
of stopbits (1...2)

flowControl one of NoFlowControl, RtsCtsFlowControl or XonXoffFlowControl.

Returns:

the new file descriptor, or -1 if an error occurred

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

48

Definition at line 7 of file serportx.cpp.

References ctb::SerialPort_DCS::baud, ctb::SerialPort_x::m_dcs, ctb::IOBase::OpenDevice(),
ctb::SerialPort_DCS::parity, ctb::ParityEven, ctb::ParityMark, ctb::ParityNone, ctb::ParityOdd,
ctb::ParitySpace, ctb::SerialPort_DCS::rtscts, ctb::SerialPort_x::RtsCtsFlowControl, ctb::Serial-
Port_DCS::stopbits, ctb::SerialPort_DCS::wordlen, ctb::SerialPort_DCS::xonxoff, and ctb::Serial-
Port_x::XonXoffFlowControl.

Referenced by ctb::GetAvailablePorts(), and ctb::SerialPort_x::Open().

int ctb::SerialPort::OpenDevice (const char * devname, void * dcs) [protected, virtual]

Open the interface (internally to request a file descriptor for the given interface). The second pa-
rameter is a undefined pointer of a device dependent data struct. It must be undefined, because
different devices have different settings. A serial device like the com ports points here to a data
struct, includes information like baudrate, parity, count of stopbits and wordlen and so on. An-
other devices (for example a IEEE) needs a adress and EOS (end of string character) and don’t
use baudrate or parity.

Parameters:

devname the name of the device, presents the given interface. Under windows for example
COMT1, under Linux /dev/cua0. Use wxCOMn to avoid plattform depended code (n is
the serial port number, beginning with 1).

dcs untyped pointer of advanced device parameters,

See also:

struct dcs_devCUA (data struct for the serail com ports)

Returns:

Zero on success, otherwise -1

Implements ctb::IOBase.
Definition at line 195 of file serport.cpp.

References AdaptBaudrate(), ctb::SerialPort DCS::baud, fd, ctb::SerialPort_x::IsStandard-
Rate(), last_info, ctb::SerialPort_x::m_dcs, ctb::SerialPort_x::m_devname, ctb::SerialPort_-
DCS::parity, ctb::ParityEven, ctb::ParityMark, ctb::ParityNone, ctb::ParityOdd, ctb::Parity-
Space, ctb::SerialPort_DCS::rtscts, save_t, SetBaudrateAny(), ctb::SerialPort_DCS::stopbits,
ctb::SerialPort_DCS::wordlen, and ctb::SerialPort_DCS::xonxoff.

int ctb::IOBase::PutBack (charch) [inline, inherited]

In some circumstances you want to put back a already readed byte (for instance, you have over-
readed it and like to parse the recieving bytes again). The internal fifo stores fifoSize characters
until you have to read again.

Parameters:

ch the character to put back in the input stream

Returns:

1, if successful, otherwise 0

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 49

Definition at line 176 of file iobase.h.
References ctb::I0Base::m_fifo, and ctb::Fifo::put().
Referenced by ctb::I0Base::ReadUntilEOS().

int ctb::SerialPort::Read (char * buf, size_t len) [virtuall
Read attempt to read len bytes from the interface into the buffer starting with buf. Read never
blocks. If there are no bytes for reading, Read returns zero otherwise the count of bytes been
readed.
Parameters:

buf starting adress of the buffer

len count of bytes, we want to read

Returns:

-1 on fails, otherwise the count of readed bytes

Implements ctb::I0OBase.
Definition at line 310 of file serport.cpp.

References fd, ctb::Fifo::items(), ctb::IOBase::m_fifo, and ctb::Fifo::read().

int ctb::I0OBase::ReadUntilEOS (char +& readbuf, size_t « readedBytes, char * eosString = "\n",
long timeout_in_ms = 1000L, char quota =0) [virtual, inherited]

ReadUntilEos read bytes from the interface until the EOS string was received or a timeout occurs.
ReadUntilEos returns the count of bytes been readed. The received bytes are stored on the heap
point by the readbuf pointer and must delete by the caller.

Parameters:

readbuf points to the start of the readed bytes. You must delete them, also if you received
no byte.

readedBytes A pointer to the variable that receives the number of bytes read.
eosString is the null terminated end of string sequence. Default is the linefeed character.
timeout_in_ms the function returns after this time, also if no eos occured (default is 1s).

quota defines a character between those an EOS doesn’t terminate the string

Returns:

1 on sucess (the operation ends successfull without a timeout), 0 if a timeout occurred and
-1 otherwise

Definition at line 77 of file iobase.cpp.

References ctb::I0Base::PutBack(), ctb::I0OBase::Read(), ctb::sleepms(), and ctb::Timer::start().

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

50

int ctb:IOBase:Readv (char x buf, size_t len, int x timeout_flag, bool nice = false)
[inherited]

readv() attempts to read up to len bytes from the interface into the buffer starting at buf. readv()
is blocked till len bytes are readed or the timeout_flag points on a int greater then zero.

Parameters:

buf starting adress of the buffer
len count bytes, we want to read

timeout_flag a pointer to an integer. If you don’t want any timeout, you given a null pointer
here. But think of it: In this case, this function comes never back, if there a not enough
bytes to read.

nice if true go to sleep for one ms (reduce CPU last), if there is no byte available (default is
false)

Definition at line 51 of file iobase.cpp.

References ctb::lI0OBase::Read(), and ctb::sleepms().

int ctb::I0Base::Readv (char * buf, size_t len, unsigned int timeout_in_ms) [inherited]

readv() attempts to read up to len bytes from the interface into the buffer starting at buf. readv()
is blocked till len bytes are readed or the given timeout in milliseconds was reached.

Parameters:

buf starting address of the buffer
len count bytes, we want to read

timeout_in_ms in milliseconds. If you don’t want any timeout, you give the wxTIMEOUT _-
INFINITY here. But think of it: In this case, this function never returns if there a not
enough bytes to read.

Returns:

the number of data bytes successfully read

Definition at line 19 of file iobase.cpp.

References ctb::I0OBase::Read(), and ctb::sleepms().

int ctb::SerialPort::SendBreak (int duration) [virtual]

Sendbreak transmits a continuous stream of zero-valued bits for a specific duration.

Parameters:
duration If duration is zero, it transmits zero-valued bits for at least 0.25 seconds, and not
more that 0.5 seconds. If duration is not zero, it sends zero-valued bits for duration+N
seconds, where N is at least 0.25, and not more than 0.5.
Returns:

zero on success, -1 if an error occurs.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 51

Implements ctb::SerialPort_x.
Definition at line 323 of file serport.cpp.
References fd.

Referenced by loctl().

int ctb::SerialPort::SetBaudrate (int baudrate) [virtual]

Set the baudrate (also non-standard) Please note: Non-standard baudrates like 70000 are not
supported by each UART and depends on the RS232 chipset you apply.

Parameters:

baudrate the new baudrate

Returns:

zero on success, -1 if an error occurs

Implements ctb::SerialPort_x.
Definition at line 391 of file serport.cpp.

References ctb::SerialPort_x::IsStandardRate(), SetBaudrateAny(), and SetBaudrate-
Standard().

int ctb::SerialPort::SetBaudrateAny (int baudrate) [protected]

internal member function to set an unusal (non-standard) baudrate. Called by SetBaudrate.
Definition at line 360 of file serport.cpp.

References fd.

Referenced by OpenDevice(), and SetBaudrate().

int ctb::SerialPort::SetBaudrateStandard (int baudrate) [protected]

internal member function to set a standard baudrate. Called by SetBaudrate.

Definition at line 375 of file serport.cpp.

References AdaptBaudrate(), ctb::SerialPort_DCS::baud, fd, and ctb::SerialPort_x::m_dcs.
Referenced by SetBaudrate().

int ctb::SerialPort::SetLineState (SerialLineState flags) [virtual]
turn on status lines depending upon which bits (DSR and/or RTS) are set in flags.

Parameters:
flags valid line flags are SERIAL_LINESTATE_DSR and/or SERIAL_LINESTATE_RTS

Returns:

zero on success, -1 if an error occurs

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

52

Implements ctb::SerialPort_x.
Definition at line 399 of file serport.cpp.

References fd.

int ctb::SerialPort::SetParityBit (bool parity) [virtual]

Set the parity bit to a firm state, for instance to use the parity bit as the ninth bit in a 9 bit dataword
communication.

Returns:

zero on succes, a negative value if an error occurs

Implements ctb::SerialPort_x.
Definition at line 404 of file serport.cpp.
References fd.

Referenced by loctl().

int ctb::SerialPort::Write (char * buf, size_t len) [virtual]

Write writes up to len bytes from the buffer starting with buf into the interface.

Parameters:

buf start adress of the buffer
len count of bytes, we want to write

Returns:

on success, the number of bytes written are returned (zero indicates nothing was written).
On error, -1 is returned.

Implements ctb::I0OBase.
Definition at line 433 of file serport.cpp.

References fd.

int ctb:IOBase:Writev (char * buf, size_t len, int x timeout_flag, bool nice = false)
[inherited]

Writev() writes up to len bytes to the interface from the buffer, starting at buf. Also Writev() blocks
till all bytes are written or the timeout_flag points to an integer greater then zero.

Parameters:

buf starting adress of the buffer
len count bytes, we want to write

timeout_flag a pointer to an integer. You also can give a null pointer here. This blocks, til all
data is writen.

nice if true go to sleep for one ms (reduce CPU last), if there is no byte available (default is
false)

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 53

Definition at line 188 of file iobase.cpp.

References ctb::sleepms(), and ctb::IOBase::Write().

int ctb::I0Base::Writev (char * buf, size_t len, unsigned int timeout_in_ms) [inherited]

Writev() writes up to len bytes to the interface from the buffer, starting at buf. Also Writev() blocks
till all bytes are written or the given timeout in milliseconds was reached.

Parameters:
buf starting address of the buffer
len count bytes, we want to write

timeout_in_ms timeout in milliseconds. If you give wxTIMEOUT_INFINITY here, the func-
tion blocks, till all data was written.

Returns:

the number of data bytes successfully written.

Definition at line 158 of file iobase.cpp.

References ctb::sleepms(), ctb::Timer::start(), and ctb::I0OBase::Write().

0.3.5.4 Member Data Documentation

int ctb::SerialPort::fd [protected]
under Linux, the serial ports are normal file descriptor
Definition at line 29 of file linux/serport.h.

Referenced by ChangelineState(), CloseDevice(), ClrLineState(), GetLineState(), loctl(), Is-
Open(), OpenDevice(), Read(), SendBreak(), SerialPort(), SetBaudrateAny(), SetBaudrate-
Standard(), SetLineState(), SetParityBit(), and Write().

struct serial_icounter_struct save_info ctb::SerialPort::last_info [protected]

The Linux serial driver summing all breaks, framings, overruns and parity errors for each port
during system runtime. Because we only need the errors during a active connection, we must
save the actual error numbers in this separate structurs.

Definition at line 43 of file linux/serport.h.
Referenced by loctl(), and OpenDevice().

SerialPort_DCS ctb::SerialPort_x::m_dcs [protected, inherited]
contains the internal settings of the serial port like baudrate, protocol, wordlen and so on.
Definition at line 273 of file serportx.h.

Referenced by ctb::SerialPort_x::GetSettingsAsString(), ctb::SerialPort_x::Open(), Open-
Device(), and SetBaudrateStandard().

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

54

char ctb::SerialPort_x::m_devname[SERIALPORT_NAME_LEN] [protected,
inherited]

contains the internal (os specific) name of the serial device.
Definition at line 278 of file serportx.h.

Referenced by OpenDevice(), and ctb::SerialPort_x::SerialPort_x().

Fifox ctb:IOBase:m_fifo [protected, inherited]

internal fifo (first in, first out queue) to put back already readed bytes into the reading stream.
After put back a single byte or sequence of characters, you can read them again with the next
Read call.

Definition at line 70 of file iobase.h.

Referenced by ctb::IOBase::I0OBase(), ctb::IOBase::PutBack(), Read(), ctb::GpibDevice::Read(),
and ctb::lIOBase::~IOBase().

struct termios t ctb::SerialPort::save_t [protected]

Linux defines this struct termios for controling asynchronous communication. t covered the active
settings, save_t the original settings.

Definition at line 35 of file linux/serport.h.
Referenced by OpenDevice().

The documentation for this class was generated from the following files:

* linux/serport.h
* serport.cpp

0.3.6 ctb::SerialPort_ DCS Struct Reference

#include <serportx.h>

0.3.6.1 Detailed Description

The device control struct for the serial communication class. This struct should be used, if you
refer advanced parameter.

Definition at line 140 of file serportx.h.

Public Member Functions

* char x GetSettings ()
returns the internal settings of the DCS as a human readable string like '‘8N1 115200’

* SerialPort_DCS ()
» ~SerialPort_DCS ()

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 55

Public Attributes

* int baud

* char buf [16]

* Parity parity

* bool rtscts

* unsigned char stopbits
* unsigned char wordlen
* bool xonxoff

0.3.6.2 Member Function Documentation

charx ctb::SerialPort_DCS::GetSettings () [inline]

returns the internal settings of the DCS as a human readable string like '8N1 115200’.

Returns:

the internal settings as null terminated string

Definition at line 171 of file serportx.h.
References baud, buf, parity, stopbits, and wordlen.

Referenced by ctb::SerialPort_x::GetSettingsAsString().

0.3.6.3 Member Data Documentation

int ctb::SerialPort_DCS::baud
the baudrate
Definition at line 143 of file serportx.h.

Referenced by GetSettings(), ctb::SerialPort_x::Open(), ctb::SerialPort::OpenDevice(), Serial-
Port_DCS(), and ctb::SerialPort::SetBaudrateStandard().

char ctb::SerialPort_DCS::buf[16]
buffer for internal use
Definition at line 155 of file serportx.h.

Referenced by GetSettings().

Parity ctb::SerialPort_DCS::parity
the parity
Definition at line 145 of file serportx.h.

Referenced by GetSettings(), ctb::SerialPort_x::Open(), ctb::SerialPort::OpenDevice(), and
SerialPort_DCS().

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

56

bool ctb::SerialPort_DCS::rtscts

rtscts flow control

Definition at line 151 of file serportx.h.

Referenced by ctb::SerialPort_x::Open(), ctb::SerialPort::OpenDevice(), and SerialPort_DCS().

unsigned char ctb::SerialPort_DCS::stopbits
count of stopbits
Definition at line 149 of file serportx.h.

Referenced by GetSettings(), ctb::SerialPort_x::Open(), ctb::SerialPort::OpenDevice(), and
SerialPort_DCS().

unsigned char ctb::SerialPort_DCS::wordlen
the wordlen
Definition at line 147 of file serportx.h.

Referenced by GetSettings(), ctb::SerialPort_x::Open(), ctb::SerialPort::OpenDevice(), and
SerialPort_DCS().

bool ctb::SerialPort_DCS::xonxoff

XON/XOFF flow control

Definition at line 153 of file serportx.h.

Referenced by ctb::SerialPort_x::Open(), ctb::SerialPort::OpenDevice(), and SerialPort_DCS().

The documentation for this struct was generated from the following file:

* serportx.h

0.3.7 ctb::SerialPort_ EINFO Struct Reference

#include <serportx.h>

0.3.7.1 Detailed Description

The internal communication error struct. It contains the number of each error (break, framing,
overrun and parity) since opening the serial port. Each error number will be cleared if the open
methode was called.

Definition at line 191 of file serportx.h.

Public Member Functions

- SerialPort_EINFO ()

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation

Public Attributes

* int brk

* int frame
* int overrun
* int parity

0.3.7.2 Member Data Documentation

int ctb::SerialPort_ EINFO::brk
number of breaks

Definition at line 194 of file serportx.h.
Referenced by SerialPort_EINFO().

int ctb::SerialPort_ EINFO::frame
number of framing errors

Definition at line 196 of file serportx.h.
Referenced by SerialPort_EINFO().

int ctb::SerialPort_ EINFO::overrun
number of overrun errors

Definition at line 198 of file serportx.h.
Referenced by SerialPort_EINFO().

int ctb::SerialPort_EINFO::parity
number of parity errors

Definition at line 200 of file serportx.h.
Referenced by SerialPort_EINFO().

The documentation for this struct was generated from the following file:

 serportx.h

0.3.8 ctb::SerialPort_x Class Reference

#include <serportx.h>

Inheritance diagram for ctb::SerialPort_x:

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

58

ctb::IOBase
ctb::SerialPort_x

ctb::SerialPort

Collaboration diagram for ctb::SerialPort_x:

m_fifo

| ctb::lCSBase | ctb::SerialPort_DCS |

1

m_dcs

/

ctb::SerialPort_x

0.3.8.1 Detailed Description

SerialPort_x is the basic class for serial communication via the serial comports. It is also an ab-
stract class and defines all necessary methods, which the derivated plattform depended classes
must be invoke.

Definition at line 266 of file serportx.h.

Public Types

» enum FlowControl { NoFlowControl, RtsCtsFlowControl, XonXoffFlowControl }
Specifies the flow control.

Public Member Functions

virtual int ChangeLineState (SerialLineState flags)=0
change the linestates according to which bits are set/unset in flags.

« const char x ClassName ()

returns the name of the class instance. You find this useful, if you handle different devices like a
serial port or a gpib device via a IOBase pointer.

int Close ()
« virtual int ClrLineState (SerialLineState flags)=0

turn off status lines depending upon which bits (DSR and/or RTS) are set in flags.

« virtual int GetLineState ()=0

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 59

Read the line states of DCD, CTS, DSR and RING.

« virtual char * GetSettingsAsString ()
request the current settings of the connected serial port as a null terminated string.

« virtual int loctl (int cmd, void xargs)

Many operating characteristics are only possible for special devices. To avoid the need of a lot of
different functions and to give the user a uniform interface, all this special operating instructions
will covered by one loctl methode (like the linux ioctl call). The loctl command (cmd) has encoded
in it whether the argument is an in parameter or out parameter, and the size of the argument args
in bytes. Macros and defines used in specifying an ioctl request are located in iobase.h and the
header file for the derivated device (for example in serportx.h).

« virtual int IsOpen ()=0

« int Open (const char xdevname, void xdcs=0L)

+ int Open (const int portnumber, int baudrate, const char xprotocol="8N1", FlowControl flow-
Control=NoFlowControl)

Opens the serial port with the given number.

« int Open (const char «portname, int baudrate, const char xprotocol="8N1", FlowControl
flowControl=NoFlowControl)

Opens a serial port in a user likely way. Insteed of using the Device Control Struct just input your
parameter in a more intuitive manner.

* int PutBack (char ch)

In some circumstances you want to put back a already readed byte (for instance, you have over-
readed it and like to parse the recieving bytes again). The internal fifo stores fifoSize characters
until you have to read again.

« virtual int Read (char xbuf, size_t len)=0
« virtual int ReadUntilEOS (char x&readbuf, size_t xreadedBytes, char xeosString="\n", long
timeout_in_ms=1000L, char quota=0)

ReadUntilEos read bytes from the interface until the EOS string was received or a timeout occurs.
ReadUntilEos returns the count of bytes been readed. The received bytes are stored on the heap
point by the readbuf pointer and must delete by the caller.

* int Readv (char xbuf, size_t len, int xtimeout_flag, bool nice=false)

readv() attempts to read up to len bytes from the interface into the buffer starting at buf. readv() is
blocked till len bytes are readed or the timeout_flag points on a int greater then zero.

+ int Readv (char xbuf, size_t len, unsigned int timeout_in_ms)

readv() attempts to read up to len bytes from the interface into the buffer starting at buf. readv() is
blocked till len bytes are readed or the given timeout in milliseconds was reached.

« virtual int SendBreak (int duration)=0

Sendbreak transmits a continuous stream of zero-valued bits for a specific duration.

* SerialPort_x ()
« virtual int SetBaudrate (int baudrate)=0

Set the baudrate (also non-standard) Please note: Non-standard baudrates like 70000 are not
supported by each UART and depends on the RS232 chipset you apply.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

60

« virtual int SetLineState (SerialLineState flags)=0
turn on status lines depending upon which bits (DSR and/or RTS) are set in flags.

« virtual int SetParityBit (bool parity)=0

Set the parity bit to a firm state, for instance to use the parity bit as the ninth bit in a 9 bit dataword
communication.

» virtual int Write (char «buf, size_t len)=0

* int Writev (char «buf, size_t len, int «timeout_flag, bool nice=false)
* int Writev (char «buf, size_t len, unsigned int timeout_in_ms)

+ virtual ~SerialPort_x ()

Static Public Member Functions

+ static bool IsStandardRate (int rate)

check the given baudrate against a list of standard rates. \ return true, if the baudrate is a standard
value, false otherwise

Protected Types

» enum { fifoSize = 256 }

Protected Member Functions

« virtual int CloseDevice ()=0

» virtual int OpenDevice (const char xdevname, void xdcs=0L)=0
Protected Attributes

 SerialPort_ DCS m_dcs
contains the internal settings of the serial port like baudrate, protocol, wordlen and so on.

» char m_devname [SERIALPORT_NAME_LEN]
contains the internal (os specific) name of the serial device.

+ Fifo « m_fifo

internal fifo (first in, first out queue) to put back already readed bytes into the reading stream. After
put back a single byte or sequence of characters, you can read them again with the next Read
call.

0.3.8.2 Member Enumeration Documentation
anonymous enum [protected, inherited]

Enumerator:

fifoSize fifosize of the putback fifo

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 61

Definition at line 71 of file iobase.h.

enum ctb::SerialPort_x::FlowControl

Specifies the flow control.

Enumerator:

NoFlowControl No flow control at all
RtsCtsFlowControl Enable RTS/CTS hardware flow control
XonXoffFlowControl Enable XON/XOFF protocol

Definition at line 287 of file serportx.h.

0.3.8.3 Member Function Documentation

virtual int ctb::SerialPort_x::ChangeLineState (SerialLineState flags) [pure virtual]
change the linestates according to which bits are set/unset in flags.

Parameters:
flags valid line flags are SERIAL_LINESTATE_DSR and/or SERIAL_LINESTATE_RTS

Returns:

zero on success, -1 if an error occurs

Implemented in ctb::SerialPort.

const charx ctb::SerialPort_x::ClassName () [inline, wvirtual]

returns the name of the class instance. You find this useful, if you handle different devices like a
serial port or a gpib device via a IOBase pointer.

Returns:

name of the class.

Reimplemented from ctb::IOBase.

Definition at line 304 of file serportx.h.

int ctb::I0Base::Close () [inline, inherited]

Closed the interface. Internally it calls the CloseDevice() method, which must be defined in the
derivated class.

Returns:

zero on success, or -1 if an error occurred.

Definition at line 123 of file iobase.h.
References ctb::I0Base::CloseDevice().

Referenced by ctb::GpibDevice::~GpibDevice(), and ctb::SerialPort::~SerialPort().

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

62

virtual int ctb::IOBase::CloseDevice () [protected, pure virtual, inherited]

Close the interface (internally the file descriptor, which was connected with the interface).

Returns:

Zero on success, otherwise -1.

Implemented in ctb::GpibDevice, and ctb::SerialPort.

Referenced by ctb::IOBase::Close().

virtual int ctb::SerialPort_x::ClrLineState (SerialLineState flags) [pure virtual]
turn off status lines depending upon which bits (DSR and/or RTS) are set in flags.

Parameters:
flags valid line flags are SERIAL_LINESTATE_DSR and/or SERIAL_LINESTATE_RTS

Returns:

zero on success, -1 if an error occurs

Implemented in ctb::SerialPort.

virtual int ctb::SerialPort_x::GetLineState () [pure virtual]
Read the line states of DCD, CTS, DSR and RING.

Returns:

returns the appropriate bits on sucess, otherwise -1

Implemented in ctb::SerialPort.

virtual charx ctb::SerialPort_x::GetSettingsAsString () [inline, virtual]

request the current settings of the connected serial port as a null terminated string.

Returns:
the settings as a string like '8N1 115200’

Definition at line 335 of file serportx.h.
References ctb::SerialPort_DCS::GetSettings(), and m_dcs.

virtual int ctb::SerialPort_x:loctl (int cmd, void * args) [inline, virtuall]

Many operating characteristics are only possible for special devices. To avoid the need of a lot of
different functions and to give the user a uniform interface, all this special operating instructions
will covered by one loctl methode (like the linux ioctl call). The loctl command (cmd) has encoded
in it whether the argument is an in parameter or out parameter, and the size of the argument args
in bytes. Macros and defines used in specifying an ioctl request are located in iobase.h and the
header file for the derivated device (for example in serportx.h).

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 63

Parameters:

cmd one of SerialPortloctls specify the ioctl request.
args is a typeless pointer to a memory location, where loctl reads the request arguments or

write the results. Please note, that an invalid memory location or size involving a buffer
overflow or segmention fault!

Reimplemented from ctb::IOBase.

Reimplemented in ctb::SerialPort.

Definition at line 356 of file serportx.h.

virtual int ctb::IOBase::IsOpen () [pure virtual, inherited]

Returns the current state of the device.

Returns:

1 if device is valid and open, otherwise 0

Implemented in ctb::GpibDevice, and ctb::SerialPort.

bool ctb::SerialPort_x::IsStandardRate (int rate) [static]

check the given baudrate against a list of standard rates. \ return true, if the baudrate is a
standard value, false otherwise

Definition at line 86 of file serportx.cpp.

Referenced by ctb::SerialPort::OpenDevice(), and ctb::SerialPort::SetBaudrate().

int ctb::10Base::Open (const char * devname, void * dcs = 0L) [inline, inherited]

Parameters:

devname name of the interface, we want to open

dcs a untyped pointer to a device control struct. If he is NULL, the default device parameter
will be used.

Returns:

the new file descriptor, or -1 if an error occurred

The pointer dcs will be used for special device dependent settings. Because this is very specific,
the struct or destination of the pointer will be defined by every device itself. (For example: a
serial device class should refer things like parity, word length and count of stop bits, a IEEE class
adress and EOS character).

Definition at line 163 of file iobase.h.

References ctb::IOBase::OpenDevice().

int ctb::SerialPort_x::Open (const int portnumber, int baudrate, const char x protocol = "8N1",
FlowControl flowControl = NoFlowControl)

Opens the serial port with the given number.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

64

Note:

The port numbering starts with 1 (COM1 for windows and /dev/ttySO0 for Linux. Please note,
that USB to RS232 converter in Linux are named as /dev/ttyUSBx and from there have to
opened with their device name!

Parameters:
number of the serial port count from 1
baudrate any baudrate, also an unusual one, if your serial device support them

protocol a string with the number of databits (5...8), the parity setting
(N=None,0=0dd,E=Even,M=Mark,S=Space), also in lower case, and the count
of stopbits (1...2)

flowControl one of NoFlowControl, RtsCtsFlowControl or XonXoffFlowControl.

Returns:
the new file descriptor, or -1 if an error occurred

Definition at line 63 of file serportx.cpp.

References Open().

int ctb::SerialPort_x::Open (const char * portname, int baudrate, const char * protocol = "8N1",
FlowControl flowControl = NoFlowControl)

Opens a serial port in a user likely way. Insteed of using the Device Control Struct just input your
parameter in a more intuitive manner.

Parameters:
portname the name of the serial port
baudrate any baudrate, also an unusual one, if your serial device support them

protocol a string with the number of databits (5...8), the parity setting
(N=None,0=0dd,E=Even,M=Mark,S=Space), also in lower case, and the count
of stopbits (1...2)

flowControl one of NoFlowControl, RtsCtsFlowControl or XonXoffFlowControl.

Returns:

the new file descriptor, or -1 if an error occurred

Definition at line 7 of file serportx.cpp.

References ctb::SerialPort_DCS::baud, m_dcs, ctb::IOBase::OpenDevice(), ctb::SerialPort_-
DCS::parity, ctb::ParityEven, ctb::ParityMark, ctb::ParityNone, ctb::ParityOdd, ctb::ParitySpace,
ctb::SerialPort_DCS::rtscts, RtsCtsFlowControl, ctb::SerialPort_DCS::stopbits, ctb::SerialPort_-
DCS::wordlen, ctb::SerialPortDCS::xonxoff, and XonXoffFlowControl.

Referenced by ctb::GetAvailablePorts(), and Open().

virtual int ctb::IOBase::OpenDevice (const char x devname, void * dcs = 0L) [protected,
pure virtual, inherited]

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 65

Open the interface (internally to request a file descriptor for the given interface). The second pa-
rameter is a undefined pointer of a device dependent data struct. It must be undefined, because
different devices have different settings. A serial device like the com ports points here to a data
struct, includes information like baudrate, parity, count of stopbits and wordlen and so on. An-
other devices (for example a IEEE) needs a adress and EOS (end of string character) and don’t
use baudrate or parity.

Parameters:

devname the name of the device, presents the given interface. Under windows for example
COM1, under Linux /dev/cua0. Use wxCOMN to avoid plattform depended code (n is
the serial port number, beginning with 1).

dcs untyped pointer of advanced device parameters,

See also:

struct dcs_devCUA (data struct for the serail com ports)

Returns:

zero on success, otherwise -1

Implemented in ctb::GpibDevice, and ctb::SerialPort.
Referenced by Open(), and ctb::IOBase::Open().

int ctb::IOBase::PutBack (charch) [inline, inherited]

In some circumstances you want to put back a already readed byte (for instance, you have over-
readed it and like to parse the recieving bytes again). The internal fifo stores fifoSize characters
until you have to read again.

Parameters:

ch the character to put back in the input stream

Returns:

1, if successful, otherwise 0

Definition at line 176 of file iobase.h.
References ctb::I0Base::m_fifo, and ctb::Fifo::put().
Referenced by ctb::I0Base::ReadUntilEOS().

virtual int ctb::IOBase::Read (char * buf, size_t len) [pure virtual, inherited]

Read attempt to read len bytes from the interface into the buffer starting with buf. Read never
blocks. If there are no bytes for reading, Read returns zero otherwise the count of bytes been
readed.

Parameters:

buf starting adress of the buffer
len count of bytes, we want to read

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

66

Returns:

-1 on fails, otherwise the count of readed bytes

Implemented in ctb::GpibDevice, and ctb::SerialPort.
Referenced by ctb::10Base::ReadUntilEOQS(), and ctb::IOBase::Readv().

int ctb::I0OBase::ReadUntilEOS (char & readbuf, size_t « readedBytes, char x eosString = "\n",
long timeout_in_ms = 1000L, char quota = 0) [virtual, inherited]

ReadUntilEos read bytes from the interface until the EOS string was received or a timeout occurs.
ReadUntilEos returns the count of bytes been readed. The received bytes are stored on the heap
point by the readbuf pointer and must delete by the caller.

Parameters:

readbuf points to the start of the readed bytes. You must delete them, also if you received
no byte.

readedBytes A pointer to the variable that receives the number of bytes read.
eosString is the null terminated end of string sequence. Default is the linefeed character.
timeout_in_ms the function returns after this time, also if no eos occured (default is 1s).

quota defines a character between those an EOS doesn’t terminate the string

Returns:

1 on sucess (the operation ends successfull without a timeout), 0 if a timeout occurred and
-1 otherwise

Definition at line 77 of file iobase.cpp.

References ctb::IOBase::PutBack(), ctb::IOBase::Read(), ctb::sleepms(), and ctb::Timer::start().

int ctb:IOBase:Readv (char * buf, size_t len, int x timeout_flag, bool nice = false)
[inherited]

readv() attempts to read up to len bytes from the interface into the buffer starting at buf. readv()
is blocked till len bytes are readed or the timeout_flag points on a int greater then zero.

Parameters:
buf starting adress of the buffer
len count bytes, we want to read

timeout_flag a pointer to an integer. If you don’t want any timeout, you given a null pointer
here. But think of it: In this case, this function comes never back, if there a not enough
bytes to read.

nice if true go to sleep for one ms (reduce CPU last), if there is no byte available (default is
false)

Definition at line 51 of file iobase.cpp.

References ctb::lI0OBase::Read(), and ctb::sleepms().

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 67

int ctb::I0Base::Readv (char * buf, size_t len, unsigned int timeout_in_ms) [inherited]

readv() attempts to read up to len bytes from the interface into the buffer starting at buf. readv()
is blocked till len bytes are readed or the given timeout in milliseconds was reached.

Parameters:
buf starting address of the buffer
len count bytes, we want to read

timeout_in_ms in milliseconds. If you don’'t want any timeout, you give the wxTIMEOUT _-
INFINITY here. But think of it: In this case, this function never returns if there a not
enough bytes to read.

Returns:

the number of data bytes successfully read

Definition at line 19 of file iobase.cpp.

References ctb::I0OBase::Read(), and ctb::sleepms().

virtual int ctb::SerialPort_x::SendBreak (int duration) [pure virtual]

Sendbreak transmits a continuous stream of zero-valued bits for a specific duration.

Parameters:

duration If duration is zero, it transmits zero-valued bits for at least 0.25 seconds, and not
more that 0.5 seconds. If duration is not zero, it sends zero-valued bits for durationxN
seconds, where N is at least 0.25, and not more than 0.5.

Returns:

zero on success, -1 if an error occurs.

Implemented in ctb::SerialPort.

virtual int ctb::SerialPort_x::SetBaudrate (int baudrate) [pure virtual]

Set the baudrate (also non-standard) Please note: Non-standard baudrates like 70000 are not
supported by each UART and depends on the RS232 chipset you apply.

Parameters:

baudrate the new baudrate

Returns:

Zero on success, -1 if an error occurs

Implemented in ctb::SerialPort.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

68

virtual int ctb::SerialPort_x::SetLineState (SerialLineState flags) [pure virtual]
turn on status lines depending upon which bits (DSR and/or RTS) are set in flags.

Parameters:
flags valid line flags are SERIAL_LINESTATE_DSR and/or SERIAL_LINESTATE_RTS

Returns:

zero on success, -1 if an error occurs

Implemented in ctb::SerialPort.

virtual int ctb::SerialPort_x::SetParityBit (bool parity) [pure virtual]

Set the parity bit to a firm state, for instance to use the parity bit as the ninth bit in a 9 bit dataword
communication.

Returns:

zero on succes, a negative value if an error occurs

Implemented in ctb::SerialPort.

virtual int ctb::I0Base::Write (char * buf, size_t len) [pure virtual, inherited]

Write writes up to len bytes from the buffer starting with buf into the interface.

Parameters:

buf start adress of the buffer
len count of bytes, we want to write

Returns:

on success, the number of bytes written are returned (zero indicates nothing was written).
On error, -1 is returned.

Implemented in ctb::GpibDevice, and ctb::SerialPort.
Referenced by ctb::IOBase::Writev().

int ctb:IOBase::Writev (char * buf, size_t len, int x timeout_flag, bool nice = false)
[inherited]

Writev() writes up to len bytes to the interface from the buffer, starting at buf. Also Writev() blocks
till all bytes are written or the timeout_flag points to an integer greater then zero.

Parameters:

buf starting adress of the buffer
len count bytes, we want to write

timeout_flag a pointer to an integer. You also can give a null pointer here. This blocks, til all
data is writen.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 69

nice if true go to sleep for one ms (reduce CPU last), if there is no byte available (default is
false)
Definition at line 188 of file iobase.cpp.

References ctb::sleepms(), and ctb::IOBase::Write().

int ctb::I0Base::Writev (char * buf, size_t len, unsigned int timeout_in_ms) [inherited]

Writev() writes up to len bytes to the interface from the buffer, starting at buf. Also Writev() blocks
till all bytes are written or the given timeout in milliseconds was reached.

Parameters:

buf starting address of the buffer
len count bytes, we want to write
timeout_in_ms timeout in milliseconds. If you give wxTIMEOUT_INFINITY here, the func-

tion blocks, till all data was written.
Returns:

the number of data bytes successfully written.

Definition at line 158 of file iobase.cpp.

References ctb::sleepms(), ctb::Timer::start(), and ctb::I0OBase::Write().

0.3.8.4 Member Data Documentation

SerialPort_DCS ctb::SerialPort_x::m_dcs [protected]
contains the internal settings of the serial port like baudrate, protocol, wordlen and so on.
Definition at line 273 of file serportx.h.

Referenced by GetSettingsAsString(), Open(), ctb::SerialPort::OpenDevice(), and ctb::Serial-
Port::SetBaudrateStandard().

char ctb::SerialPort_x::m_devname[SERIALPORT_NAME_LEN] [protected]
contains the internal (os specific) name of the serial device.
Definition at line 278 of file serportx.h.

Referenced by ctb::SerialPort::OpenDevice(), and SerialPort_x().

Fifox ctb::IOBase:m_fifo [protected, inherited]

internal fifo (first in, first out queue) to put back already readed bytes into the reading stream.
After put back a single byte or sequence of characters, you can read them again with the next
Read call.

Definition at line 70 of file iobase.h.

Referenced by ctb::IOBase::I0Base(), ctb::I0Base::PutBack(), ctb::SerialPort::Read(), ctb::Gpib-
Device::Read(), and ctb::IOBase::~I0OBase().

The documentation for this class was generated from the following files:

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

70

* serportx.h
* serportx.cpp

0.3.9 ctb::Timer Class Reference

#include <timer.h>

Collaboration diagram for ctb::Timer:

ctb::timer_control

Icontrol

0.3.9.1 Detailed Description

A thread based timer class for handling timeouts in an easier way.

On starting every timer instance will create it's own thread. The thread makes simply nothing,
until it’s given time is over. After that, he set a variable, refer by it’s adress to one and exit.

There are a lot of situations, which the timer class must handle. The timer instance leaves his valid
range (for example, the timer instance is local inside a function, and the function fished) BEFORE
the thread was ending. In this case, the destructor must terminate the thread in a correct way.
(This is very different between the OS. threads are a system resource like file descriptors and
must be deallocated after using it).

The thread should be asynchronously stopped. Means, under all circumstance, it must be possi-
ble, to finish the timer and start it again.

Several timer instance can be used simultanously.

Definition at line 65 of file linux/timer.h.

Public Member Functions

int start ()
int stop ()
» Timer (unsigned int msec, int xexitflag, void *(xexitfnc)(void x))
» ~Timer ()

Protected Attributes

« timer_control control

int stopped

pthread_t tid

* unsigned int timer_secs

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.3 libctb Class Documentation 71

0.3.9.2 Constructor & Destructor Documentation

ctb::Timer:: Timer (unsigned int msec, int exitflag, void *(x)(void *) exitfnc)

The constructor creates an timer object with the given properties. The timer at this moment is not
started. This will be done with the start() member function.

Parameters:

msec time interval after that the the variable pointed by exitflag is setting to one.
exitflag the adress of an integer, which was set to one after the given time interval.

Warning:

The integer variable shouldn’t leave it’s valid range, before the timer was finished. So never
take a local variable.

Parameters:

exitfunc A function, which was called after msec. If you don’t want this, refer a NULL pointer.

Definition at line 44 of file timer.cpp.

References control, ctb::itimer_control::exitflag, ctb::timer_control::exitfnc, stopped, and
ctb::timer_control::usecs.

ctb::Timer::~Timer ()

the destructor. If his was called (for example by leaving the valid range of the timer object), the
timer thread automaticaly will finished. The exitflag wouldn’t be set, also the exitfnc wouldn’t be
called.

Definition at line 54 of file timer.cpp.

References stop(), and stopped.

0.3.9.3 Member Function Documentation

int ctb:: Timer::start ()

starts the timer. But now a thread will created and started. After this, the timer thread will be
running until he was stopped by calling stop() or reached his given time interval.

Definition at line 63 of file timer.cpp.
References control, stopped, tid, and ctb::timer_fnc().
Referenced by ctb::IOBase::ReadUntilEOS(), and ctb::IOBase::Writev().

int ctb::Timer::stop ()

stops the timer and canceled the timer thread. After timer::stop() a new start() will started the
timer from beginning.

Definition at line 83 of file timer.cpp.
References control, ctb::timer_control::exitflag, stopped, and tid.

Referenced by ~Timer().

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

72

0.3.9.4 Member Data Documentation

timer_control ctb::Timer::control [protected]

control covers the time interval, the adress of the exitflag, and if not null, a function, which will be
called on the end.

Definition at line 73 of file linux/timer.h.

Referenced by start(), stop(), and Timer().

int ctb: Timer::stopped [protected]

stopped will be set by calling the stop() method. Internaly the timer thread steadily tests the state
of this variable. If stopped not zero, the thread will be finished.

Definition at line 80 of file linux/timer.h.
Referenced by start(), stop(), Timer(), and ~Timer().

pthread_t ctb::Timer:tid [protected]
under linux we use the pthread library. tid covers the identifier for a separate threads.
Definition at line 85 of file linux/timer.h.

Referenced by start(), and stop().

unsigned int ctb: Timer::timer_secs [protected]
here we store the time interval, whilst the timer run. This is waste!!!
Definition at line 90 of file linux/timer.h.

The documentation for this class was generated from the following files:
* linux/timer.h
* timer.cpp

0.3.10 ctb::timer_control Struct Reference

#include <timer.h>

0.3.10.1 Detailed Description

A data struct, using from class timer.

Definition at line 24 of file linux/timer.h.

Public Attributes

* int x exitflag
+ void *(x exitfnc)(void x)
* unsigned int usecs

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.4 libctb File Documentation 73

0.3.10.2 Member Data Documentation

int« ctb::timer_control::exitflag
covers the adress of the exitflag
Definition at line 33 of file linux/timer.h.

Referenced by ctb::Timer::stop(), ctb::Timer::Timer(), and ctb::timer_fnc().

voidx*(* ctb::timer_control::exitfnc)(void *)
covers the adress of the exit function. NULL, if there was no exit function.

Referenced by ctb::Timer:Timer(), and ctb::timer_fnc().

unsigned int ctb:timer_control::usecs

under linux, we used usec internally

Definition at line 29 of file linux/timer.h.

Referenced by ctb::Timer::Timer(), and ctb::timer_fnc().

The documentation for this struct was generated from the following file:

* linux/timer.h

0.4 libctb File Documentation

0.4.1 fifo.h File Reference
0.4.1.1 Detailed Description

Definition in file fifo.h.

Namespaces

* namespace ctb

Classes

« class ctb::Fifo

0.4.2 gpib.h File Reference
0.4.2.1 Detailed Description

Definition in file gpib.h.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

74

Namespaces

* namespace ctb

Classes

» struct ctb::Gpib_DCS
+ class ctb::GpibDevice

Enumerations

» enum ctb::Gpibloctls {

ctb::CTB_GPIB_SETADR = CTB_GPIB, ctb::CTB_GPIB_GETRSP, ctb::CTB_GPIB_-
GETSTA, ctb::CTB_GPIB_GETERR,

ctb::CTB_GPIB_GETLINES, ctb:CTB_GPIB_SETTIMEOUT, ctb::CTB_GPIB_GTL,
ctb::CTB_GPIB_REN,

ctb::CTB_GPIB_RESET_BUS, ctb:CTB_GPIB_SET_EOS_CHAR, ctb::CTB_GPIB_-
GET_EOS_CHAR, ctb::CTB_GPIB_SET_EOS_MODE,

ctb::CTB_GPIB_GET_EOS_MODE }
+ enum ctb::GpibTimeout {

ctb::GpibTimeoutNone = 0, ctb::GpibTimeout10us, ctb::GpibTimeout30us, ctb::Gpib-
Timeout100us,

ctb::GpibTimeout300us, ctb::GpibTimeoutims, ctb::GpibTimeout3ms, ctb::Gpib-
Timeout10ms,

ctb::GpibTimeout30ms, ctb::GpibTimeout100ms, ctb::GpibTimeout300ms, ctb::Gpib-
Timeoutts,

ctb::GpibTimeout3s, ctb::GpibTimeout10s, ctb::GpibTimeout30s, ctb::GpibTimeout100s,
ctb::GpibTimeout300s, ctb::GpibTimeout1000s }

Variables
 const char * ctb::GPIB1
 const char * ctb::GPIB2
0.4.3 iobase.h File Reference
0.4.3.1 Detailed Description

Definition in file iobase.h.

Namespaces

* namespace ctb

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

0.4 libctb File Documentation 75

Classes

« class ctb::IOBase

Enumerations

« enum { CTB_COMMON = 0x0000, CTB_SERIAL = 0x0100, CTB_GPIB = 0x0200, CTB_-
TIMEOUT_INFINITY = OxFFFFFFFF }
» enum ctb::IOBaseloctls { ctb::CTB_RESET = CTB_COMMON }
0.4.4 portscan.h File Reference

0.4.4.1 Detailed Description

Definition in file portscan.h.

Namespaces

* namespace ctb

Functions

* bool ctb::GetAvailablePorts (std::vector< std::string > &result, bool checkinUse=true)
returns all available COM ports as an array of strings.

0.4.5 serportx.h File Reference
0.4.5.1 Detailed Description

Definition in file serportx.h.

Namespaces

* namespace ctb

Classes

« struct ctb::SerialPort_DCS
« struct ctb::SerialPort_EINFO
« class ctb::SerialPort_x

Defines

+ #define SERIALPORT_NAME_LEN 32

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

76

Enumerations

» enum ctb::Parity {

ctb::ParityNone, ctb::ParityOdd, ctb::ParityEven, ctb::ParityMark,
ctb::ParitySpace }

Defines the different modes of parity checking. Under Linux, the struct termios will be set to
provide the wanted behaviour.

enum ctb::SerialLineState {

ctb::LinestateDcd = 0x040, ctb::LinestateCts = 0x020, ctb::LinestateDsr = 0x100,
ctb::LinestateDtr = 0x002,

ctb::LinestateRing = 0x080, ctb::LinestateRts = 0x004, ctb::LinestateNull = 0x000 }
enum ctb::SerialPortloctls {

ctb::CTB_SER_GETEINFO = CTB_SERIAL, ctb::CTB_SER_GETBRK, ctb::CTB_SER_-
GETFRM, ctb::CTB_SER_GETOVR,

ctb::CTB_SER_GETPAR, ctb::CTB_SER_GETINQUE, ctb::CTB_SER_SETPAR }

Variables

const char * ctb::COM1
const char * ctb::COM10
const char * ctb::COM11
const char * ctb::COM12
const char * ctb::COM13
const char * ctb::COM14
const char * ctb::COM15
const char * ctb::COM16
const char * ctb::COM17
const char * ctb::COM18
const char * ctb::COM19
const char * ctb::COM2
const char * ctb::COM20
const char * ctb::COM3
const char * ctb::COM4
const char * ctb::COM5
const char * ctb::COM6
const char * ctb::COM7
const char * ctb::COM8
const char * ctb::COM9

0.4.5.2 Define Documentation

#define SERIALPORT_NAME_LEN 32
defines the maximum length of the os depending serial port names

Definition at line 28 of file serportx.h.

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

Index

~Fifo

ctb::Fifo, 15
~Gpib_DCS

ctb::Gpib_DCS, 18
~|OBase

ctb::IOBase, 34
~Timer

ctb::Timer, 71

AdaptBaudrate
ctb::SerialPort, 43

baud

ctb::SerialPort_DCS, 55
brk

ctb::SerialPort_EINFO, 57
buf

ctb::SerialPort_DCS, 55

ChangelLineState
ctb::SerialPort, 44
ctb::SerialPort_x, 61

ClassName
ctb::GpibDevice, 23
ctb::IOBase, 34
ctb::SerialPort, 44
ctb::SerialPort_x, 61

clear
ctb::Fifo, 15

Close
ctb::GpibDevice, 23
ctb::IOBase, 34
ctb::SerialPort, 44
ctb::SerialPort_x, 61

CloseDevice
ctb::GpibDevice, 24
ctb::IOBase, 34
ctb::SerialPort, 44
ctb::SerialPort_x, 61

ClrLineState
ctb::SerialPort, 45
ctb::SerialPort_x, 62

COM1
ctb, 8

COM10

ctb, 9
COM11
ctb, 9
COM12
ctb, 9
COM13
ctb, 9
COM14

ctb, 9, 10

COM15
ctb, 10
COM16
ctb, 10
COM17
ctb, 10
COM18
ctb, 10
COM19
ctb, 11
COM2
ctb, 11
COM20
ctb, 11
COMS3
ctb, 11
COM4

ctb, 11,12

COM5

ctb, 12
COMe6

ctb, 12
COM7

ctb, 12
COMS8

ctb, 12
COM9

ctb, 13
control

ctb::Timer, 72

ctb, 3

COM1, 8

COM10, 9
COM11,9
COM12,9

78

COM13, 9

COM14,9, 10

COM15, 10

COM1e, 10

COM17,10

COM18, 10

COM19, 11

COM2, 11

COM20, 11

COMS, 11

COM4, 11,12

COMS5, 12

COMe, 12

COM7, 12

COM8, 12

COMg9, 13
CTB_GPIB_GET_EOS_CHAR, 5
CTB_GPIB_GET_EOS_MODE, 6
CTB_GPIB_GETERR, 5
CTB_GPIB_GETLINES, 5
CTB_GPIB_GETRSP, 5
CTB_GPIB_GETSTA, 5
CTB_GPIB_GTL, 5
CTB_GPIB_REN, 5
CTB_GPIB_RESET_BUS, 5
CTB_GPIB_SET_EOS_CHAR, 5
CTB_GPIB_SET_EOS_MODE, 6
CTB_GPIB_SETADR, 5
CTB_GPIB_SETTIMEOUT, 5
CTB_RESET, 6
CTB_SER_GETBRK, 7
CTB_SER_GETEINFO, 7
CTB_SER_GETFRM, 8
CTB_SER_GETINQUE, 8
CTB_SER_GETOVR, 8
CTB_SER_GETPAR, 8
CTB_SER_SETPAR, 8
GetAvailablePorts, 8

GPIB1, 13

GPIB2, 13

gpibErrors, 13

Gpibloctls, 5

GpibTimeout, 6
GpibTimeout1000s, 6
GpibTimeout100ms, 6
GpibTimeout100s, 6
GpibTimeout100us, 6
GpibTimeout10ms, 6
GpibTimeout10s, 6
GpibTimeout10us, 6
GpibTimeout1ims, 6
GpibTimeout1s, 6
GpibTimeout300ms, 6
GpibTimeout300s, 6

GpibTimeout300us, 6
GpibTimeout30ms, 6
GpibTimeout30s, 6
GpibTimeout30us, 6
GpibTimeout3ms, 6
GpibTimeout3s, 6
GpibTimeoutNone, 6
IOBaseloctls, 6
LinestateCts, 7
LinestateDcd, 7
LinestateDsr, 7
LinestateDtr, 7
LinestateNull, 7
LinestateRing, 7
LinestateRts, 7
Parity, 6
ParityEven, 7
ParityMark, 7
ParityNone, 7
ParityOdd, 7
ParitySpace, 7
SerialLineState, 7
SerialPortloctls, 7
sleepms, 8
ctb::Fifo, 14
~Fifo, 15
clear, 15
Fifo, 15
get, 15
items, 16
m_begin, 17
m_end, 17
m_rdptr, 17
m_size, 17
m_wrptr, 17
put, 16
read, 16
write, 17
ctb::Gpib_DCS, 18
~Gpib_DCS, 18
GetSettings, 19
Gpib_DCS, 18
m_address1, 19
m_address2, 19
m_buf, 19
m_eosChar, 19
m_eosMode, 20
m_eot, 20
m_timeout, 20
ctb::GpibDevice, 20
fifoSize, 23
ctb::GpibDevice
ClassName, 23
Close, 23

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

INDEX

79

ctb::

CloseDevice, 24
FindListeners, 24
GetErrorDescription, 24
GetErrorNotation, 25
GetErrorString, 25
GetSettingsAsString, 25
lord, 25

Ibwrt, 25

loctl, 26

IsOpen, 26
m_board, 31
m_count, 31
m_dcs, 31
m_error, 31
m_fifo, 31

m_hd, 31

m_state, 32
Open, 26, 27
OpenDevice, 27
PutBack, 28
Read, 28
ReadUntilEQCS, 28
Readyv, 29

Write, 30

Writev, 30
IOBase, 32
~|OBase, 34
ClassName, 34
Close, 34
CloseDevice, 34
fifoSize, 34
IOBase, 34

loctl, 35

IsOpen, 35

m_fifo, 39

Open, 35
OpenDevice, 36
PutBack, 36
Read, 36
ReadUntilEQCS, 37
Readv, 37, 38
Write, 38

Writev, 38, 39

ctb::SerialPort, 39

fifoSize, 43
NoFlowControl, 43
RtsCtsFlowControl, 43
XonXoffFlowControl, 43

ctb::SerialPort

AdaptBaudrate, 43
ChangelineState, 44
ClassName, 44
Close, 44
CloseDevice, 44

ctb:
ctb:

ctb:

ctb:

ctb:

ctb:
ctb:

ClrLineState, 45

fd, 53

FlowControl, 43
GetlLineState, 45
GetSettingsAsString, 45
loctl, 45

IsOpen, 46
IsStandardRate, 46
last_info, 53
m_dcs, 53
m_devname, 53
m_fifo, 54

Open, 46, 47
OpenDevice, 48
PutBack, 48

Read, 49
ReadUntilEQCS, 49
Readyv, 49, 50
save t, 54
SendBreak, 50
SetBaudrate, 51
SetBaudrateAny, 51
SetBaudrateStandard, 51
SetlLineState, 51
SetParityBit, 52
Write, 52

Writev, 52, 53

:SerialPort_DCS, 54
:SerialPort_DCS

baud, 55

buf, 55
GetSettings, 55
parity, 55
rtscts, 55
stopbits, 56
wordlen, 56
xonxoff, 56

:SerialPort_EINFO, 56
:SerialPort_EINFO

brk, 57
frame, 57
overrun, 57
parity, 57

:SerialPort_x

fifoSize, 60
NoFlowControl, 61
RtsCtsFlowControl, 61
XonXoffFlowControl, 61

:SerialPort_x, 57
:SerialPort_x

ChangeLineState, 61
ClassName, 61
Close, 61
CloseDevice, 61

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

80 INDEX
ClrLineState, 62 ctb, 5
FlowControl, 61 CTB_GPIB_SET EOS_MODE
GetLineState, 62 ctb, 6
GetSettingsAsString, 62 CTB_GPIB_SETADR
loctl, 62 ctb, 5
IsOpen, 63 CTB_GPIB_SETTIMEOUT
IsStandardRate, 63 ctb, 5
m_dcs, 69 CTB_RESET
m_devname, 69 ctb, 6
m_fifo, 69 CTB_SER_GETBRK
Open, 63, 64 ctb, 7
OpenDevice, 64 CTB_SER_GETEINFO
PutBack, 65 ctb, 7
Read, 65 CTB_SER_GETFRM
ReadUntilEQS, 66 ctb, 8
Readv, 66 CTB_SER_GETINQUE
SendBreak, 67 ctb, 8
SetBaudrate, 67 CTB_SER_GETOVR
SetlLineState, 67 ctb, 8
SetParityBit, 68 CTB_SER_GETPAR
Write, 68 ctb, 8
Writev, 68, 69 CTB_SER_SETPAR
ctb::Timer, 70 ctb, 8
~Timer, 71
control, 72 exitflag
start, 71 ctb::timer_control, 73
stop, 71 exitfnc
stopped, 72 ctb::timer_control, 73
tid, 72
Timer, 71 fd
timer_secs, 72 ctb::SerialPort, 53
ctb::timer_control, 72 Fifo
exitflag, 73 ctb::Fifo, 15
exitfnc, 73 fifo.h, 73
usecs, 73 fifoSize

CTB_GPIB_GET_EOS_CHAR

ctb, 5
CTB_GPIB_GET_EOS_MODE

ctb, 6
CTB_GPIB_GETERR

ctb, 5
CTB_GPIB_GETLINES

ctb, 5
CTB_GPIB_GETRSP

ctb, 5
CTB_GPIB_GETSTA

ctb, 5
CTB_GPIB_GTL

ctb, 5
CTB_GPIB_REN

ctb, 5
CTB_GPIB_RESET _BUS

ctb, 5
CTB_GPIB_SET_EOS _CHAR

ctb::GpibDevice, 23
ctb::IOBase, 34
ctb::SerialPort, 43
ctb::SerialPort_x, 60
FindListeners
ctb::GpibDevice, 24
FlowControl
ctb::SerialPort, 43
ctb::SerialPort_x, 61
frame
ctb::SerialPort_EINFO, 57

get

ctb::Fifo, 15
GetAvailablePorts

ctb, 8
GetErrorDescription

ctb::GpibDevice, 24
GetErrorNotation

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

INDEX

81

ctb::GpibDevice, 25
GetErrorString
ctb::GpibDevice, 25
GetLineState
ctb::SerialPort, 45
ctb::SerialPort_x, 62
GetSettings
ctb::Gpib_DCS, 19

ctb::SerialPort_DCS, 55

GetSettingsAsString
ctb::GpibDevice, 25
ctb::SerialPort, 45
ctb::SerialPort_x, 62

gpib.h, 73

GPIB1
ctb, 13

GPIB2
ctb, 13

Gpib_DCS
ctb::Gpib_DCS, 18

gpibErrors
ctb, 13

Gpibloctls
ctb, 5

GpibTimeout
ctb, 6

GpibTimeout1000s
ctb, 6

GpibTimeout100ms
ctb, 6

GpibTimeout100s
ctb, 6

GpibTimeout100us
ctb, 6

GpibTimeout10ms
ctb, 6

GpibTimeout10s
ctb, 6

GpibTimeout10us
ctb, 6

GpibTimeout1ims
ctb, 6

GpibTimeout1s
ctb, 6

GpibTimeout300ms
ctb, 6

GpibTimeout300s
ctb, 6

GpibTimeout300us
ctb, 6

GpibTimeout30ms
ctb, 6

GpibTimeout30s
ctb, 6

GpibTimeout30us
ctb, 6

GpibTimeout3ms
ctb, 6

GpibTimeout3s
ctb, 6

GpibTimeoutNone
ctb, 6

lord
ctb::GpibDevice, 25
lowrt
ctb::GpibDevice, 25
IOBase
ctb::IOBase, 34
iobase.h, 74
IOBaseloctls
ctb, 6
loctl
ctb::GpibDevice, 26
ctb::IOBase, 35
ctb::SerialPort, 45
ctb::SerialPort_x, 62
IsOpen
ctb::GpibDevice, 26
ctb::IOBase, 35
ctb::SerialPort, 46
ctb::SerialPort_x, 63
IsStandardRate
ctb::SerialPort, 46
ctb::SerialPort_x, 63
items
ctb::Fifo, 16

last_info
ctb::SerialPort, 53
LinestateCts
ctb, 7
LinestateDcd
ctb, 7
LinestateDsr
ctb, 7
LinestateDtr
ctb, 7
LinestateNull
ctb, 7
LinestateRing
ctb, 7
LinestateRts
ctb, 7

m_address1
ctb::Gpib_DCS, 19
m_address2

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

82 INDEX
ctb::Gpib_DCS, 19 ctb::GpibDevice, 27

m_begin ctb::IOBase, 36
ctb::Fifo, 17 ctb::SerialPort, 48

m_board ctb::SerialPort_x, 64

ctb::GpibDevice, 31
m_buf

ctb::Gpib_DCS, 19
m_count

ctb::GpibDevice, 31
m_dcs

ctb::GpibDevice, 31

ctb::SerialPort, 53

ctb::SerialPort_x, 69
m_devname

ctb::SerialPort, 53

ctb::SerialPort_x, 69
m_end

ctb::Fifo, 17
m_eosChar

ctb::Gpib_DCS, 19
m_eosMode

ctb::Gpib_DCS, 20
m_eot

ctb::Gpib_DCS, 20
m_error

ctb::GpibDevice, 31
m_fifo

ctb::GpibDevice, 31

ctb::IOBase, 39

ctb::SerialPort, 54

ctb::SerialPort_x, 69
m_hd

ctb::GpibDevice, 31
m_rdptr

ctb::Fifo, 17
m_size

ctb::Fifo, 17
m_state

ctb::GpibDevice, 32
m_timeout

ctb::Gpib_DCS, 20
m_wrptr

ctb::Fifo, 17

NoFlowControl
ctb::SerialPort, 43
ctb::SerialPort_x, 61

Open
ctb::GpibDevice, 26, 27
ctb::IOBase, 35
ctb::SerialPort, 46, 47
ctb::SerialPort_x, 63, 64
OpenDevice

overrun
ctb::SerialPort_EINFO, 57

Parity
ctb, 6
parity
ctb::SerialPort_DCS, 55
ctb::SerialPort_EINFO, 57
ParityEven
ctb, 7
ParityMark
ctb, 7
ParityNone
ctb, 7
ParityOdd
ctb, 7
ParitySpace
ctb, 7
portscan.h, 75
put
ctb::Fifo, 16
PutBack
ctb::GpibDevice, 28
ctb::I0OBase, 36
ctb::SerialPort, 48
ctb::SerialPort_x, 65

Read
ctb::GpibDevice, 28
ctb::IOBase, 36
ctb::SerialPort, 49
ctb::SerialPort_x, 65
read
ctb::Fifo, 16
ReadUntilEOS
ctb::GpibDevice, 28
ctb::IOBase, 37
ctb::SerialPort, 49
ctb::SerialPort_x, 66
Readv
ctb::GpibDevice, 29
ctb::IOBase, 37, 38
ctb::SerialPort, 49, 50
ctb::SerialPort_x, 66
rtscts
ctb::SerialPort_DCS, 55
RtsCtsFlowControl
ctb::SerialPort, 43
ctb::SerialPort_x, 61

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

INDEX 83
save_t write

ctb::SerialPort, 54 ctb::Fifo, 17
SendBreak Writev

ctb::SerialPort, 50
ctb::SerialPort_x, 67
SerialLineState
ctb, 7
SERIALPORT_NAME_LEN
serportx.h, 76
SerialPortloctls
ctb, 7
serportx.h, 75
SERIALPORT _NAME_LEN, 76
SetBaudrate
ctb::SerialPort, 51
ctb::SerialPort_x, 67
SetBaudrateAny
ctb::SerialPort, 51
SetBaudrateStandard
ctb::SerialPort, 51
SetlLineState
ctb::SerialPort, 51
ctb::SerialPort_x, 67
SetParityBit
ctb::SerialPort, 52
ctb::SerialPort_x, 68
sleepms
ctb, 8
start
ctb::Timer, 71
stop
ctb::Timer, 71
stopbits
ctb::SerialPort_DCS, 56
stopped
ctb::Timer, 72

tid

ctb::Timer, 72
Timer

ctb::Timer, 71
timer_secs

ctb::Timer, 72

usecs
ctb::timer_control, 73

wordlen
ctb::SerialPort_DCS, 56
Write
ctb::GpibDevice, 30
ctb::I0Base, 38
ctb::SerialPort, 52
ctb::SerialPort_x, 68

ctb::GpibDevice, 30
ctb::IOBase, 38, 39
ctb::SerialPort, 52, 53
ctb::SerialPort_x, 68, 69

xonxoff
ctb::SerialPort_DCS, 56

XonXoffFlowControl
ctb::SerialPort, 43
ctb::SerialPort_x, 61

Generated on Mon Sep 20 13:47:00 2010 for libctb by Doxygen

	ctb overview
	libctb Namespace Documentation
	libctb Class Documentation
	libctb File Documentation

