2012-12-21 02:08:42 +00:00
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
|
|
|
|
FILE........: lsp.c
|
|
|
|
AUTHOR......: David Rowe
|
|
|
|
DATE CREATED: 24/2/93
|
|
|
|
|
|
|
|
|
|
|
|
This file contains functions for LPC to LSP conversion and LSP to
|
|
|
|
LPC conversion. Note that the LSP coefficients are not in radians
|
|
|
|
format but in the x domain of the unit circle.
|
|
|
|
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
Copyright (C) 2009 David Rowe
|
|
|
|
|
|
|
|
All rights reserved.
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU Lesser General Public License version 2.1, as
|
|
|
|
published by the Free Software Foundation. This program is
|
|
|
|
distributed in the hope that it will be useful, but WITHOUT ANY
|
|
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
|
|
License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
|
|
along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "defines.h"
|
|
|
|
#include "lsp.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
/* Only 10 gets used, so far. */
|
|
|
|
#define LSP_MAX_ORDER 20
|
|
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
|
|
|
|
Introduction to Line Spectrum Pairs (LSPs)
|
|
|
|
------------------------------------------
|
|
|
|
|
|
|
|
LSPs are used to encode the LPC filter coefficients {ak} for
|
|
|
|
transmission over the channel. LSPs have several properties (like
|
|
|
|
less sensitivity to quantisation noise) that make them superior to
|
|
|
|
direct quantisation of {ak}.
|
|
|
|
|
|
|
|
A(z) is a polynomial of order lpcrdr with {ak} as the coefficients.
|
|
|
|
|
|
|
|
A(z) is transformed to P(z) and Q(z) (using a substitution and some
|
|
|
|
algebra), to obtain something like:
|
|
|
|
|
|
|
|
A(z) = 0.5[P(z)(z+z^-1) + Q(z)(z-z^-1)] (1)
|
|
|
|
|
|
|
|
As you can imagine A(z) has complex zeros all over the z-plane. P(z)
|
|
|
|
and Q(z) have the very neat property of only having zeros _on_ the
|
|
|
|
unit circle. So to find them we take a test point z=exp(jw) and
|
|
|
|
evaluate P (exp(jw)) and Q(exp(jw)) using a grid of points between 0
|
|
|
|
and pi.
|
|
|
|
|
|
|
|
The zeros (roots) of P(z) also happen to alternate, which is why we
|
|
|
|
swap coefficients as we find roots. So the process of finding the
|
|
|
|
LSP frequencies is basically finding the roots of 5th order
|
|
|
|
polynomials.
|
|
|
|
|
|
|
|
The root so P(z) and Q(z) occur in symmetrical pairs at +/-w, hence
|
|
|
|
the name Line Spectrum Pairs (LSPs).
|
|
|
|
|
|
|
|
To convert back to ak we just evaluate (1), "clocking" an impulse
|
|
|
|
thru it lpcrdr times gives us the impulse response of A(z) which is
|
|
|
|
{ak}.
|
|
|
|
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
|
|
|
|
FUNCTION....: cheb_poly_eva()
|
|
|
|
AUTHOR......: David Rowe
|
|
|
|
DATE CREATED: 24/2/93
|
|
|
|
|
|
|
|
This function evalutes a series of chebyshev polynomials
|
|
|
|
|
|
|
|
FIXME: performing memory allocation at run time is very inefficient,
|
|
|
|
replace with stack variables of MAX_P size.
|
|
|
|
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
|
|
|
|
static float
|
|
|
|
cheb_poly_eva(float *coef,float x,int m)
|
|
|
|
/* float coef[] coefficients of the polynomial to be evaluated */
|
|
|
|
/* float x the point where polynomial is to be evaluated */
|
|
|
|
/* int m order of the polynomial */
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
float *t,*u,*v,sum;
|
|
|
|
float T[(LSP_MAX_ORDER / 2) + 1];
|
|
|
|
|
|
|
|
/* Initialise pointers */
|
|
|
|
|
|
|
|
t = T; /* T[i-2] */
|
|
|
|
*t++ = 1.0;
|
|
|
|
u = t--; /* T[i-1] */
|
|
|
|
*u++ = x;
|
|
|
|
v = u--; /* T[i] */
|
|
|
|
|
|
|
|
/* Evaluate chebyshev series formulation using iterative approach */
|
|
|
|
|
|
|
|
for(i=2;i<=m/2;i++)
|
|
|
|
*v++ = (2*x)*(*u++) - *t++; /* T[i] = 2*x*T[i-1] - T[i-2] */
|
|
|
|
|
|
|
|
sum=0.0; /* initialise sum to zero */
|
|
|
|
t = T; /* reset pointer */
|
|
|
|
|
|
|
|
/* Evaluate polynomial and return value also free memory space */
|
|
|
|
|
|
|
|
for(i=0;i<=m/2;i++)
|
|
|
|
sum+=coef[(m/2)-i]**t++;
|
|
|
|
|
|
|
|
return sum;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
|
|
|
|
FUNCTION....: lpc_to_lsp()
|
|
|
|
AUTHOR......: David Rowe
|
|
|
|
DATE CREATED: 24/2/93
|
|
|
|
|
|
|
|
This function converts LPC coefficients to LSP coefficients.
|
|
|
|
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
int lpc_to_lsp (float *a, int lpcrdr, float *freq, int nb, float delta)
|
|
|
|
/* float *a lpc coefficients */
|
|
|
|
/* int lpcrdr order of LPC coefficients (10) */
|
|
|
|
/* float *freq LSP frequencies in radians */
|
|
|
|
/* int nb number of sub-intervals (4) */
|
|
|
|
/* float delta grid spacing interval (0.02) */
|
|
|
|
{
|
|
|
|
float psuml,psumr,psumm,temp_xr,xl,xr,xm = 0;
|
|
|
|
float temp_psumr;
|
|
|
|
int i,j,m,flag,k;
|
|
|
|
float *px; /* ptrs of respective P'(z) & Q'(z) */
|
|
|
|
float *qx;
|
|
|
|
float *p;
|
|
|
|
float *q;
|
|
|
|
float *pt; /* ptr used for cheb_poly_eval()
|
|
|
|
whether P' or Q' */
|
|
|
|
int roots=0; /* number of roots found */
|
|
|
|
float Q[LSP_MAX_ORDER + 1];
|
|
|
|
float P[LSP_MAX_ORDER + 1];
|
|
|
|
|
|
|
|
flag = 1;
|
|
|
|
m = lpcrdr/2; /* order of P'(z) & Q'(z) polynimials */
|
|
|
|
|
|
|
|
/* Allocate memory space for polynomials */
|
|
|
|
|
|
|
|
/* determine P'(z)'s and Q'(z)'s coefficients where
|
|
|
|
P'(z) = P(z)/(1 + z^(-1)) and Q'(z) = Q(z)/(1-z^(-1)) */
|
|
|
|
|
|
|
|
px = P; /* initilaise ptrs */
|
|
|
|
qx = Q;
|
|
|
|
p = px;
|
|
|
|
q = qx;
|
|
|
|
*px++ = 1.0;
|
|
|
|
*qx++ = 1.0;
|
|
|
|
for(i=1;i<=m;i++){
|
|
|
|
*px++ = a[i]+a[lpcrdr+1-i]-*p++;
|
|
|
|
*qx++ = a[i]-a[lpcrdr+1-i]+*q++;
|
|
|
|
}
|
|
|
|
px = P;
|
|
|
|
qx = Q;
|
|
|
|
for(i=0;i<m;i++){
|
|
|
|
*px = 2**px;
|
|
|
|
*qx = 2**qx;
|
|
|
|
px++;
|
|
|
|
qx++;
|
|
|
|
}
|
|
|
|
px = P; /* re-initialise ptrs */
|
|
|
|
qx = Q;
|
|
|
|
|
|
|
|
/* Search for a zero in P'(z) polynomial first and then alternate to Q'(z).
|
|
|
|
Keep alternating between the two polynomials as each zero is found */
|
|
|
|
|
|
|
|
xr = 0; /* initialise xr to zero */
|
|
|
|
xl = 1.0; /* start at point xl = 1 */
|
|
|
|
|
|
|
|
|
|
|
|
for(j=0;j<lpcrdr;j++){
|
|
|
|
if(j%2) /* determines whether P' or Q' is eval. */
|
|
|
|
pt = qx;
|
|
|
|
else
|
|
|
|
pt = px;
|
|
|
|
|
|
|
|
psuml = cheb_poly_eva(pt,xl,lpcrdr); /* evals poly. at xl */
|
|
|
|
flag = 1;
|
|
|
|
while(flag && (xr >= -1.0)){
|
|
|
|
xr = xl - delta ; /* interval spacing */
|
|
|
|
psumr = cheb_poly_eva(pt,xr,lpcrdr);/* poly(xl-delta_x) */
|
|
|
|
temp_psumr = psumr;
|
|
|
|
temp_xr = xr;
|
|
|
|
|
|
|
|
/* if no sign change increment xr and re-evaluate
|
|
|
|
poly(xr). Repeat til sign change. if a sign change has
|
|
|
|
occurred the interval is bisected and then checked again
|
|
|
|
for a sign change which determines in which interval the
|
|
|
|
zero lies in. If there is no sign change between poly(xm)
|
|
|
|
and poly(xl) set interval between xm and xr else set
|
|
|
|
interval between xl and xr and repeat till root is located
|
|
|
|
within the specified limits */
|
|
|
|
|
|
|
|
if((psumr*psuml)<0.0){
|
|
|
|
roots++;
|
|
|
|
|
|
|
|
psumm=psuml;
|
|
|
|
for(k=0;k<=nb;k++){
|
|
|
|
xm = (xl+xr)/2; /* bisect the interval */
|
|
|
|
psumm=cheb_poly_eva(pt,xm,lpcrdr);
|
|
|
|
if(psumm*psuml>0.){
|
|
|
|
psuml=psumm;
|
|
|
|
xl=xm;
|
|
|
|
}
|
|
|
|
else{
|
|
|
|
psumr=psumm;
|
|
|
|
xr=xm;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* once zero is found, reset initial interval to xr */
|
|
|
|
freq[j] = (xm);
|
|
|
|
xl = xm;
|
|
|
|
flag = 0; /* reset flag for next search */
|
|
|
|
}
|
|
|
|
else{
|
|
|
|
psuml=temp_psumr;
|
|
|
|
xl=temp_xr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* convert from x domain to radians */
|
|
|
|
|
|
|
|
for(i=0; i<lpcrdr; i++) {
|
|
|
|
freq[i] = acos(freq[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return(roots);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
|
|
|
|
FUNCTION....: lsp_to_lpc()
|
|
|
|
AUTHOR......: David Rowe
|
|
|
|
DATE CREATED: 24/2/93
|
|
|
|
|
|
|
|
This function converts LSP coefficients to LPC coefficients. In the
|
|
|
|
Speex code we worked out a way to simplify this significantly.
|
|
|
|
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
void lsp_to_lpc(float *lsp, float *ak, int lpcrdr)
|
|
|
|
/* float *freq array of LSP frequencies in radians */
|
|
|
|
/* float *ak array of LPC coefficients */
|
|
|
|
/* int lpcrdr order of LPC coefficients */
|
|
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
int i,j;
|
|
|
|
float xout1,xout2,xin1,xin2;
|
|
|
|
float *pw,*n1,*n2,*n3,*n4 = 0;
|
|
|
|
int m = lpcrdr/2;
|
|
|
|
float freq[LSP_MAX_ORDER];
|
|
|
|
float Wp[(LSP_MAX_ORDER * 4) + 2];
|
|
|
|
|
|
|
|
/* convert from radians to the x=cos(w) domain */
|
|
|
|
|
|
|
|
for(i=0; i<lpcrdr; i++)
|
|
|
|
freq[i] = cos(lsp[i]);
|
|
|
|
|
|
|
|
pw = Wp;
|
|
|
|
|
|
|
|
/* initialise contents of array */
|
|
|
|
|
|
|
|
for(i=0;i<=4*m+1;i++){ /* set contents of buffer to 0 */
|
|
|
|
*pw++ = 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set pointers up */
|
|
|
|
|
|
|
|
pw = Wp;
|
|
|
|
xin1 = 1.0;
|
|
|
|
xin2 = 1.0;
|
|
|
|
|
|
|
|
/* reconstruct P(z) and Q(z) by cascading second order polynomials
|
|
|
|
in form 1 - 2xz(-1) +z(-2), where x is the LSP coefficient */
|
|
|
|
|
|
|
|
for(j=0;j<=lpcrdr;j++){
|
|
|
|
for(i=0;i<m;i++){
|
|
|
|
n1 = pw+(i*4);
|
|
|
|
n2 = n1 + 1;
|
|
|
|
n3 = n2 + 1;
|
|
|
|
n4 = n3 + 1;
|
|
|
|
xout1 = xin1 - 2*(freq[2*i]) * *n1 + *n2;
|
|
|
|
xout2 = xin2 - 2*(freq[2*i+1]) * *n3 + *n4;
|
|
|
|
*n2 = *n1;
|
|
|
|
*n4 = *n3;
|
|
|
|
*n1 = xin1;
|
|
|
|
*n3 = xin2;
|
|
|
|
xin1 = xout1;
|
|
|
|
xin2 = xout2;
|
|
|
|
}
|
|
|
|
xout1 = xin1 + *(n4+1);
|
|
|
|
xout2 = xin2 - *(n4+2);
|
|
|
|
ak[j] = (xout1 + xout2)*0.5;
|
|
|
|
*(n4+1) = xin1;
|
|
|
|
*(n4+2) = xin2;
|
|
|
|
|
|
|
|
xin1 = 0.0;
|
|
|
|
xin2 = 0.0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|