/* * SpanDSP - a series of DSP components for telephony * * v8.c - V.8 modem negotiation processing. * * Written by Steve Underwood * * Copyright (C) 2004 Steve Underwood * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 2.1, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * $Id: v8.c,v 1.38 2009/02/03 16:28:40 steveu Exp $ */ /*! \file */ #if defined(HAVE_CONFIG_H) #include "config.h" #endif #include #include #include #include #if defined(HAVE_TGMATH_H) #include #endif #if defined(HAVE_MATH_H) #include #endif #include "floating_fudge.h" #include "spandsp/telephony.h" #include "spandsp/logging.h" #include "spandsp/queue.h" #include "spandsp/async.h" #include "spandsp/complex.h" #include "spandsp/dds.h" #include "spandsp/tone_detect.h" #include "spandsp/tone_generate.h" #include "spandsp/super_tone_rx.h" #include "spandsp/power_meter.h" #include "spandsp/fsk.h" #include "spandsp/modem_connect_tones.h" #include "spandsp/v8.h" #include "spandsp/private/logging.h" #include "spandsp/private/fsk.h" #include "spandsp/private/modem_connect_tones.h" #include "spandsp/private/v8.h" #define ms_to_samples(t) (((t)*SAMPLE_RATE)/1000) enum { V8_WAIT_1S, V8_CI, V8_CI_ON, V8_CI_OFF, V8_HEARD_ANSAM, V8_CM_ON, V8_CJ_ON, V8_CM_WAIT, V8_SIGC, V8_WAIT_200MS, V8_JM_ON, V8_SIGA, V8_PARKED } v8_states_e; enum { V8_SYNC_UNKNOWN = 0, V8_SYNC_CI, V8_SYNC_CM_JM, V8_SYNC_V92 } v8_sync_types_e; SPAN_DECLARE(const char *) v8_call_function_to_str(int call_function) { switch (call_function) { case V8_CALL_TBS: return "TBS"; case V8_CALL_H324: return "H.324 PSTN multimedia terminal"; case V8_CALL_V18: return "V.18 textphone"; case V8_CALL_T101: return "T.101 videotext"; case V8_CALL_T30_TX: return "T.30 Tx FAX"; case V8_CALL_T30_RX: return "T.30 Rx FAX"; case V8_CALL_V_SERIES: return "V series modem data"; case V8_CALL_FUNCTION_EXTENSION: return "Call function is in extention octet"; } return "???"; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(const char *) v8_modulation_to_str(int modulation_scheme) { switch (modulation_scheme) { case V8_MOD_V17: return "V.17 half-duplex"; case V8_MOD_V21: return "V.21 duplex"; case V8_MOD_V22: return "V.22/V.22bis duplex"; case V8_MOD_V23HALF: return "V.23 half-duplex"; case V8_MOD_V23: return "V.23 duplex"; case V8_MOD_V26BIS: return "V.26bis duplex"; case V8_MOD_V26TER: return "V.26ter duplex"; case V8_MOD_V27TER: return "V.27ter duplex"; case V8_MOD_V29: return "V.29 half-duplex"; case V8_MOD_V32: return "V.32/V.32bis duplex"; case V8_MOD_V34HALF: return "V.34 half-duplex"; case V8_MOD_V34: return "V.34 duplex"; case V8_MOD_V90: return "V.90 duplex"; case V8_MOD_V92: return "V.92 duplex"; case V8_MOD_FAILED: return "negotiation failed"; } return "???"; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(const char *) v8_protocol_to_str(int protocol) { switch (protocol) { case V8_PROTOCOL_NONE: return "None"; case V8_PROTOCOL_LAPM_V42: return "LAPM"; case V8_PROTOCOL_EXTENSION: return "Extension"; } return "Undefined"; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(const char *) v8_pstn_access_to_str(int pstn_access) { return "???"; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(const char *) v8_pcm_modem_availability_to_str(int pcm_modem_availability) { return "???"; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(void) v8_log_supported_modulations(v8_state_t *s, int modulation_schemes) { const char *comma; int i; comma = ""; span_log(&s->logging, SPAN_LOG_FLOW, ""); for (i = 0; i < 32; i++) { if ((modulation_schemes & (1 << i))) { span_log(&s->logging, SPAN_LOG_FLOW | SPAN_LOG_SUPPRESS_LABELLING, "%s%s", comma, v8_modulation_to_str(modulation_schemes & (1 << i))); comma = ", "; } } span_log(&s->logging, SPAN_LOG_FLOW | SPAN_LOG_SUPPRESS_LABELLING, " supported\n"); } /*- End of function --------------------------------------------------------*/ static const uint8_t *process_call_function(v8_state_t *s, const uint8_t *p) { int call_function; call_function = (*p >> 5) & 0x07; span_log(&s->logging, SPAN_LOG_FLOW, "%s\n", v8_call_function_to_str(call_function)); s->call_function = call_function; return ++p; } /*- End of function --------------------------------------------------------*/ static const uint8_t *process_modulation_mode(v8_state_t *s, const uint8_t *p) { int far_end_modulations; /* Modulation mode octet */ far_end_modulations = 0; if (*p & 0x80) far_end_modulations |= V8_MOD_V34HALF; if (*p & 0x40) far_end_modulations |= V8_MOD_V34; if (*p & 0x20) far_end_modulations |= V8_MOD_V90; if ((*++p & 0x38) == 0x10) { if (*p & 0x80) far_end_modulations |= V8_MOD_V27TER; if (*p & 0x40) far_end_modulations |= V8_MOD_V29; if (*p & 0x04) far_end_modulations |= V8_MOD_V17; if (*p & 0x02) far_end_modulations |= V8_MOD_V22; if (*p & 0x01) far_end_modulations |= V8_MOD_V32; if ((*++p & 0x38) == 0x10) { if (*p & 0x80) far_end_modulations |= V8_MOD_V21; if (*p & 0x40) far_end_modulations |= V8_MOD_V23HALF; if (*p & 0x04) far_end_modulations |= V8_MOD_V23; if (*p & 0x02) far_end_modulations |= V8_MOD_V26BIS; if (*p & 0x01) far_end_modulations |= V8_MOD_V26TER; /* Skip any future extensions we do not understand */ while ((*++p & 0x38) == 0x10) /* dummy loop */; } } s->far_end_modulations = far_end_modulations; v8_log_supported_modulations(s, s->far_end_modulations); return ++p; } /*- End of function --------------------------------------------------------*/ static const uint8_t *process_protocols(v8_state_t *s, const uint8_t *p) { int protocol; protocol = (*p >> 5) & 0x07; span_log(&s->logging, SPAN_LOG_FLOW, "%s\n", v8_protocol_to_str(protocol)); s->protocol = protocol; return ++p; } /*- End of function --------------------------------------------------------*/ static const uint8_t *process_pstn_access(v8_state_t *s, const uint8_t *p) { int pstn_access; pstn_access = (*p >> 5) & 0x07; if (pstn_access & V8_PSTN_ACCESS_DCE_ON_DIGTIAL) span_log(&s->logging, SPAN_LOG_FLOW, "DCE on digital network connection\n"); else span_log(&s->logging, SPAN_LOG_FLOW, "DCE on analogue network connection\n"); if (pstn_access & V8_PSTN_ACCESS_ANSWER_DCE_CELLULAR) span_log(&s->logging, SPAN_LOG_FLOW, "Answer DCE on cellular connection\n"); if (pstn_access & V8_PSTN_ACCESS_CALL_DCE_CELLULAR) span_log(&s->logging, SPAN_LOG_FLOW, "Call DCE on cellular connection\n"); return ++p; } /*- End of function --------------------------------------------------------*/ static const uint8_t *process_non_standard_facilities(v8_state_t *s, const uint8_t *p) { ++p; p += *p; return p; } /*- End of function --------------------------------------------------------*/ static const uint8_t *process_pcm_modem_availability(v8_state_t *s, const uint8_t *p) { int pcm_availability; pcm_availability = (*p >> 5) & 0x07; if (pcm_availability & V8_PSTN_PCM_MODEM_V91) span_log(&s->logging, SPAN_LOG_FLOW, "V.91 available\n"); if (pcm_availability & V8_PSTN_PCM_MODEM_V90_V92_DIGITAL) span_log(&s->logging, SPAN_LOG_FLOW, "V.90 or V.92 digital modem available\n"); if (pcm_availability & V8_PSTN_PCM_MODEM_V90_V92_ANALOGUE) span_log(&s->logging, SPAN_LOG_FLOW, "V.90 or V.92 analogue modem available\n"); return ++p; } /*- End of function --------------------------------------------------------*/ static const uint8_t *process_t66(v8_state_t *s, const uint8_t *p) { return ++p; } /*- End of function --------------------------------------------------------*/ static void ci_decode(v8_state_t *s) { if ((s->rx_data[0] & 0x1F) == 0x01) process_call_function(s, &s->rx_data[0]); } /*- End of function --------------------------------------------------------*/ static void cm_jm_decode(v8_state_t *s) { const uint8_t *p; if (s->got_cm_jm) return; /* We must receive two consecutive identical CM or JM sequences to accept it. */ if (s->cm_jm_count <= 0 || s->cm_jm_count != s->rx_data_ptr || memcmp(s->cm_jm_data, s->rx_data, s->rx_data_ptr)) { /* Save the current CM or JM sequence */ s->cm_jm_count = s->rx_data_ptr; memcpy(s->cm_jm_data, s->rx_data, s->rx_data_ptr); return; } /* We have a pair of matching CMs or JMs */ s->got_cm_jm = TRUE; span_log(&s->logging, SPAN_LOG_FLOW, "Decoding\n"); /* Zero indicates the end */ s->cm_jm_data[s->cm_jm_count] = 0; s->far_end_modulations = 0; p = s->cm_jm_data; while (*p) { switch (*p & 0x1F) { case 0x01: p = process_call_function(s, p); break; case 0x05: p = process_modulation_mode(s, p); break; case 0x0A: p = process_protocols(s, p); break; case 0x0D: p = process_pstn_access(s, p); break; case 0x0F: p = process_non_standard_facilities(s, p); break; case 0x07: p = process_pcm_modem_availability(s, p); break; case 0x0E: p = process_t66(s, p); break; default: p++; break; } } } /*- End of function --------------------------------------------------------*/ static void put_bit(void *user_data, int bit) { v8_state_t *s; int new_preamble_type; const char *tag; uint8_t data; s = user_data; if (bit < 0) { /* Special conditions */ switch (bit) { case SIG_STATUS_CARRIER_UP: case SIG_STATUS_CARRIER_DOWN: case SIG_STATUS_TRAINING_SUCCEEDED: case SIG_STATUS_TRAINING_FAILED: break; default: break; } return; } /* Wait until we sync. */ s->bit_stream = (s->bit_stream >> 1) | (bit << 19); if (s->bit_stream == 0x803FF) new_preamble_type = V8_SYNC_CI; else if (s->bit_stream == 0xF03FF) new_preamble_type = V8_SYNC_CM_JM; else if (s->bit_stream == 0xAABFF) new_preamble_type = V8_SYNC_V92; else new_preamble_type = V8_SYNC_UNKNOWN; if (new_preamble_type) { /* Debug */ if (span_log_test(&s->logging, SPAN_LOG_FLOW)) { if (s->preamble_type == V8_SYNC_CI) { tag = "CI: "; } else if (s->preamble_type == V8_SYNC_CM_JM) { if (s->caller) tag = "JM: "; else tag = "CM: "; } else if (s->preamble_type == V8_SYNC_V92) { tag = "V92: "; } else { tag = "??: "; } span_log_buf(&s->logging, SPAN_LOG_FLOW, tag, s->rx_data, s->rx_data_ptr); } /* Decode previous sequence */ switch (s->preamble_type) { case V8_SYNC_CI: ci_decode(s); break; case V8_SYNC_CM_JM: cm_jm_decode(s); break; } s->preamble_type = new_preamble_type; s->bit_cnt = 0; s->rx_data_ptr = 0; } /* Parse octets with 1 bit start, 1 bit stop */ if (s->preamble_type) { s->bit_cnt++; /* Start, stop? */ if ((s->bit_stream & 0x80400) == 0x80000 && s->bit_cnt >= 10) { /* Store the available data */ data = (uint8_t) ((s->bit_stream >> 11) & 0xFF); /* CJ detection */ if (data == 0) { if (++s->zero_byte_count == 3) s->got_cj = TRUE; } else { s->zero_byte_count = 0; } if (s->rx_data_ptr < (int) (sizeof(s->rx_data) - 1)) s->rx_data[s->rx_data_ptr++] = data; s->bit_cnt = 0; } } } /*- End of function --------------------------------------------------------*/ static void v8_decode_init(v8_state_t *s) { if (s->caller) fsk_rx_init(&s->v21rx, &preset_fsk_specs[FSK_V21CH2], FALSE, put_bit, s); else fsk_rx_init(&s->v21rx, &preset_fsk_specs[FSK_V21CH1], FALSE, put_bit, s); s->preamble_type = 0; s->bit_stream = 0; s->cm_jm_count = 0; s->got_cm_jm = FALSE; s->got_cj = FALSE; s->zero_byte_count = 0; s->rx_data_ptr = 0; } /*- End of function --------------------------------------------------------*/ static int get_bit(void *user_data) { v8_state_t *s; uint8_t bit; s = user_data; if (queue_read(s->tx_queue, &bit, 1) <= 0) bit = 1; return bit; } /*- End of function --------------------------------------------------------*/ static void v8_put_byte(v8_state_t *s, int data) { int i; uint8_t bits[10]; /* Insert start & stop bits */ bits[0] = 0; for (i = 1; i < 9; i++) { bits[i] = (uint8_t) (data & 1); data >>= 1; } bits[9] = 1; queue_write(s->tx_queue, bits, 10); } /*- End of function --------------------------------------------------------*/ static void send_cm_jm(v8_state_t *s, int mod_mask) { int val; static const uint8_t preamble[20] = { /* 10 1's (0x3FF), then 10 bits of CM sync (0x00F) */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1 }; /* Send a CM, or a JM as appropriate */ queue_write(s->tx_queue, preamble, 20); /* Data call */ v8_put_byte(s, (V8_CALL_V_SERIES << 5) | 0x01); /* Supported modulations */ val = 0x05; if (mod_mask & V8_MOD_V90) val |= 0x20; if (mod_mask & V8_MOD_V34) val |= 0x40; v8_put_byte(s, val); val = 0x10; if (mod_mask & V8_MOD_V32) val |= 0x01; if (mod_mask & V8_MOD_V22) val |= 0x02; if (mod_mask & V8_MOD_V17) val |= 0x04; if (mod_mask & V8_MOD_V29) val |= 0x40; if (mod_mask & V8_MOD_V27TER) val |= 0x80; v8_put_byte(s, val); val = 0x10; if (mod_mask & V8_MOD_V26TER) val |= 0x01; if (mod_mask & V8_MOD_V26BIS) val |= 0x02; if (mod_mask & V8_MOD_V23) val |= 0x04; if (mod_mask & V8_MOD_V23HALF) val |= 0x40; if (mod_mask & V8_MOD_V21) val |= 0x80; v8_put_byte(s, val); v8_put_byte(s, (0 << 5) | 0x07); v8_put_byte(s, (V8_PROTOCOL_LAPM_V42 << 5) | 0x0A); /* No cellular right now */ v8_put_byte(s, (0 << 5) | 0x0D); } /*- End of function --------------------------------------------------------*/ static int select_modulation(int mask) { if (mask & V8_MOD_V90) return V8_MOD_V90; if (mask & V8_MOD_V34) return V8_MOD_V34; if (mask & V8_MOD_V32) return V8_MOD_V32; if (mask & V8_MOD_V23) return V8_MOD_V23; if (mask & V8_MOD_V21) return V8_MOD_V21; return V8_MOD_FAILED; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE_NONSTD(int) v8_tx(v8_state_t *s, int16_t *amp, int max_len) { int len; //span_log(&s->logging, SPAN_LOG_FLOW, "v8_tx state %d\n", s->state); len = 0; switch (s->state) { case V8_CI_ON: case V8_CM_ON: case V8_JM_ON: case V8_CJ_ON: len = fsk_tx(&s->v21tx, amp, max_len); break; case V8_CM_WAIT: /* Send the ANSam tone */ len = modem_connect_tones_tx(&s->ansam_tx, amp, max_len); break; } return len; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE_NONSTD(int) v8_rx(v8_state_t *s, const int16_t *amp, int len) { int i; int residual_samples; v8_result_t result; static const uint8_t preamble[20] = { /* 10 1's (0x3FF), then 10 bits of CI sync (0x001) */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; //span_log(&s->logging, SPAN_LOG_FLOW, "v8_rx state %d\n", s->state); residual_samples = 0; switch (s->state) { case V8_WAIT_1S: /* Wait 1 second before sending the first CI packet */ if ((s->negotiation_timer -= len) > 0) break; s->state = V8_CI; s->ci_count = 0; modem_connect_tones_rx_init(&s->ansam_rx, MODEM_CONNECT_TONES_ANS_PR, NULL, NULL); fsk_tx_init(&s->v21tx, &preset_fsk_specs[FSK_V21CH1], get_bit, s); /* Fall through to the next state */ case V8_CI: residual_samples = modem_connect_tones_rx(&s->ansam_rx, amp, len); /* Send 4 CI packets in a burst (the spec says at least 3) */ for (i = 0; i < 4; i++) { /* 10 1's (0x3FF), then CI sync (0x001) */ queue_write(s->tx_queue, preamble, 20); v8_put_byte(s, (V8_CALL_V_SERIES << 5) | 0x01); } s->state = V8_CI_ON; break; case V8_CI_ON: residual_samples = modem_connect_tones_rx(&s->ansam_rx, amp, len); if (queue_empty(s->tx_queue)) { s->state = V8_CI_OFF; s->ci_timer = ms_to_samples(500); } break; case V8_CI_OFF: residual_samples = modem_connect_tones_rx(&s->ansam_rx, amp, len); /* Check if an ANSam tone has been detected */ if (modem_connect_tones_rx_get(&s->ansam_rx)) { /* Set the Te interval. The spec. says 500ms is the minimum, but gives reasons why 1 second is a better value. */ s->ci_timer = ms_to_samples(1000); s->state = V8_HEARD_ANSAM; break; } if ((s->ci_timer -= len) <= 0) { if (++s->ci_count >= 10) { /* The spec says we should give up now. */ s->state = V8_PARKED; if (s->result_handler) s->result_handler(s->result_handler_user_data, NULL); } else { /* Try again */ s->state = V8_CI; } } break; case V8_HEARD_ANSAM: /* We have heard the ANSam signal, but we still need to wait for the end of the Te timeout period to comply with the spec. */ if ((s->ci_timer -= len) <= 0) { v8_decode_init(s); s->state = V8_CM_ON; s->negotiation_timer = ms_to_samples(5000); send_cm_jm(s, s->available_modulations); } break; case V8_CM_ON: residual_samples = fsk_rx(&s->v21rx, amp, len); if (s->got_cm_jm) { /* Now JM has been detected we send CJ and wait for 75 ms before finishing the V.8 analysis. */ s->negotiated_modulation = select_modulation(s->far_end_modulations); queue_flush(s->tx_queue); for (i = 0; i < 9; i++) v8_put_byte(s, 0); s->state = V8_CJ_ON; break; } if ((s->negotiation_timer -= len) <= 0) { /* Timeout */ s->state = V8_PARKED; if (s->result_handler) s->result_handler(s->result_handler_user_data, NULL); } if (queue_empty(s->tx_queue)) { /* Send CM again */ send_cm_jm(s, s->available_modulations); } break; case V8_CJ_ON: residual_samples = fsk_rx(&s->v21rx, amp, len); if (queue_empty(s->tx_queue)) { s->negotiation_timer = ms_to_samples(75); s->state = V8_SIGC; } break; case V8_SIGC: if ((s->negotiation_timer -= len) <= 0) { /* The V.8 negotiation has succeeded. */ s->state = V8_PARKED; if (s->result_handler) { result.call_function = s->call_function; result.available_modulations = s->far_end_modulations; result.negotiated_modulation = s->negotiated_modulation; result.protocol = s->protocol; result.pstn_access = s->pstn_access; result.nsf_seen = s->nsf_seen; result.pcm_modem_availability = s->pcm_modem_availability; result.t66_seen = s->t66_seen; s->result_handler(s->result_handler_user_data, &result); } } break; case V8_WAIT_200MS: if ((s->negotiation_timer -= len) <= 0) { /* Send the ANSam tone */ modem_connect_tones_tx_init(&s->ansam_tx, MODEM_CONNECT_TONES_ANSAM_PR); v8_decode_init(s); s->state = V8_CM_WAIT; s->negotiation_timer = ms_to_samples(5000); } break; case V8_CM_WAIT: residual_samples = fsk_rx(&s->v21rx, amp, len); if (s->got_cm_jm) { /* Stop sending ANSam and send JM instead */ fsk_tx_init(&s->v21tx, &preset_fsk_specs[FSK_V21CH2], get_bit, s); /* Set the timeout for JM */ s->negotiation_timer = ms_to_samples(5000); s->state = V8_JM_ON; s->common_modulations = s->available_modulations & s->far_end_modulations; s->negotiated_modulation = select_modulation(s->common_modulations); send_cm_jm(s, s->common_modulations); break; } if ((s->negotiation_timer -= len) <= 0) { /* Timeout */ s->state = V8_PARKED; if (s->result_handler) s->result_handler(s->result_handler_user_data, NULL); } break; case V8_JM_ON: residual_samples = fsk_rx(&s->v21rx, amp, len); if (s->got_cj) { /* Stop sending JM, and wait 75 ms */ s->negotiation_timer = ms_to_samples(75); s->state = V8_SIGA; break; } if ((s->negotiation_timer -= len) <= 0) { /* Timeout */ s->state = V8_PARKED; if (s->result_handler) s->result_handler(s->result_handler_user_data, NULL); break; } if (queue_empty(s->tx_queue)) { /* Send JM */ send_cm_jm(s, s->common_modulations); } break; case V8_SIGA: if ((s->negotiation_timer -= len) <= 0) { /* The V.8 negotiation has succeeded. */ s->state = V8_PARKED; if (s->result_handler) { result.call_function = s->call_function; result.available_modulations = s->far_end_modulations; result.negotiated_modulation = s->negotiated_modulation; result.protocol = s->protocol; result.pstn_access = s->pstn_access; result.nsf_seen = s->nsf_seen; result.pcm_modem_availability = s->pcm_modem_availability; result.t66_seen = s->t66_seen; s->result_handler(s->result_handler_user_data, &result); } } break; case V8_PARKED: residual_samples = len; break; } return residual_samples; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(logging_state_t *) v8_get_logging_state(v8_state_t *s) { return &s->logging; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(v8_state_t *) v8_init(v8_state_t *s, int caller, int available_modulations, v8_result_handler_t *result_handler, void *user_data) { if (s == NULL) { if ((s = (v8_state_t *) malloc(sizeof(*s))) == NULL) return NULL; } memset(s, 0, sizeof(*s)); s->caller = caller; s->available_modulations = available_modulations; s->result_handler = result_handler; s->result_handler_user_data = user_data; s->ci_timer = 0; if (s->caller) { s->state = V8_WAIT_1S; s->negotiation_timer = ms_to_samples(1000); } else { s->state = V8_WAIT_200MS; s->negotiation_timer = ms_to_samples(200); } if ((s->tx_queue = queue_init(NULL, 1024, 0)) == NULL) return NULL; return s; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) v8_release(v8_state_t *s) { return queue_free(s->tx_queue); } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) v8_free(v8_state_t *s) { int ret; ret = queue_free(s->tx_queue); free(s); return ret; } /*- End of function --------------------------------------------------------*/ /*- End of file ------------------------------------------------------------*/