/* * SpanDSP - a series of DSP components for telephony * * image_translate.c - Image translation routines for reworking colour * and gray scale images to be bi-level images of an * appropriate size to be FAX compatible. * * Written by Steve Underwood * * Copyright (C) 2009 Steve Underwood * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /*! \file */ #if defined(HAVE_CONFIG_H) #include "config.h" #endif #include #include #include #include #include #include #include #include #include #if defined(HAVE_TGMATH_H) #include #endif #if defined(HAVE_MATH_H) #include #endif #include "floating_fudge.h" #include #include #include "spandsp/telephony.h" #include "spandsp/fast_convert.h" #include "spandsp/logging.h" #include "spandsp/saturated.h" #include "spandsp/t4_rx.h" #include "spandsp/t4_tx.h" #if defined(SPANDSP_SUPPORT_T85) #include "spandsp/t81_t82_arith_coding.h" #include "spandsp/t85.h" #endif #include "spandsp/t4_t6_decode.h" #include "spandsp/t4_t6_encode.h" #include "spandsp/image_translate.h" #include "spandsp/private/logging.h" #if defined(SPANDSP_SUPPORT_T85) #include "spandsp/private/t81_t82_arith_coding.h" #include "spandsp/private/t85.h" #endif #include "spandsp/private/t4_t6_decode.h" #include "spandsp/private/t4_t6_encode.h" #include "spandsp/private/t4_rx.h" #include "spandsp/private/t4_tx.h" #include "spandsp/private/image_translate.h" static int image_colour16_to_gray8_row(uint8_t mono[], uint16_t colour[], int pixels) { int i; uint32_t gray; for (i = 0; i < pixels; i++) { gray = colour[3*i]*19595 + colour[3*i + 1]*38469 + colour[3*i + 2]*7472; mono[i] = saturateu8(gray >> 24); } return pixels; } /*- End of function --------------------------------------------------------*/ static int image_colour8_to_gray8_row(uint8_t mono[], uint8_t colour[], int pixels) { int i; uint32_t gray; for (i = 0; i < pixels; i++) { gray = colour[3*i]*19595 + colour[3*i + 1]*38469 + colour[3*i + 2]*7472; mono[i] = saturateu8(gray >> 16); } return pixels; } /*- End of function --------------------------------------------------------*/ static int image_gray16_to_gray8_row(uint8_t mono[], uint16_t gray[], int pixels) { int i; for (i = 0; i < pixels; i++) mono[i] = gray[i] >> 8; return pixels; } /*- End of function --------------------------------------------------------*/ static int get_and_scrunch_row(image_translate_state_t *s, uint8_t buf[], size_t len) { int row_len; row_len = (*s->row_read_handler)(s->row_read_user_data, buf, s->input_width*s->bytes_per_pixel); if (row_len != s->input_width*s->bytes_per_pixel) return 0; /* Scrunch colour down to gray, and scrunch 16 bit pixels down to 8 bit pixels */ switch (s->input_format) { case IMAGE_TRANSLATE_FROM_GRAY_16: image_gray16_to_gray8_row(buf, (uint16_t *) buf, s->input_width); break; case IMAGE_TRANSLATE_FROM_COLOUR_16: image_colour16_to_gray8_row(buf, (uint16_t *) buf, s->input_width); break; case IMAGE_TRANSLATE_FROM_COLOUR_8: image_colour8_to_gray8_row(buf, buf, s->input_width); break; } return row_len; } /*- End of function --------------------------------------------------------*/ static int image_resize_row(image_translate_state_t *s, uint8_t buf[], size_t len) { int i; int output_width; int output_length; int input_width; int input_length; double c1; double c2; double int_part; int x; #if defined(SPANDSP_USE_FIXED_POINT) int frac_row; int frac_col; #else double frac_row; double frac_col; #endif int row_len; int skip; uint8_t *p; if (s->raw_output_row < 0) return 0; output_width = s->output_width - 1; output_length = s->output_length - 1; input_width = s->input_width - 1; input_length = s->input_length - 1; skip = s->raw_output_row*input_length/output_length; if (skip >= s->raw_input_row) { skip++; while (skip >= s->raw_input_row) { if (s->raw_input_row >= s->input_length) { s->raw_output_row = -1; break; } row_len = get_and_scrunch_row(s, s->raw_pixel_row[0], s->input_width*s->bytes_per_pixel); if (row_len != s->input_width*s->bytes_per_pixel) { s->raw_output_row = -1; return 0; } s->raw_input_row++; p = s->raw_pixel_row[0]; s->raw_pixel_row[0] = s->raw_pixel_row[1]; s->raw_pixel_row[1] = p; } } #if defined(SPANDSP_USE_FIXED_POINT) frac_row = s->raw_output_row*input_length/output_length; frac_row = s->raw_output_row*input_length - frac_row*output_length; for (i = 0; i < output_width; i++) { x = i*input_width/output_width; frac_col = x - x*output_width; c1 = s->raw_pixel_row[0][x] + (s->raw_pixel_row[0][x + 1] - s->raw_pixel_row[0][x])*frac_col; c1 = s->raw_pixel_row[1][x] + (s->raw_pixel_row[1][x + 1] - s->raw_pixel_row[1][x])*frac_col; buf[i] = saturateu8(c1 + (c2 - c1)*frac_row); } #else frac_row = modf((double) s->raw_output_row*input_length/output_length, &int_part); for (i = 0; i < output_width; i++) { frac_col = modf((double) i*input_width/output_width, &int_part); x = int_part; c1 = s->raw_pixel_row[0][x] + (s->raw_pixel_row[0][x + 1] - s->raw_pixel_row[0][x])*frac_col; c2 = s->raw_pixel_row[1][x] + (s->raw_pixel_row[1][x + 1] - s->raw_pixel_row[1][x])*frac_col; buf[i] = saturateu8(c1 + (c2 - c1)*frac_row); } #endif if (++s->raw_output_row >= s->output_length) s->raw_output_row = -1; return len; } /*- End of function --------------------------------------------------------*/ static __inline__ uint8_t find_closest_palette_color(int in) { return (in >= 128) ? 255 : 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) image_translate_row(image_translate_state_t *s, uint8_t buf[], size_t len) { int x; int y; int i; int j; int limit; int old_pixel; int new_pixel; int quant_error; uint8_t *p; uint8_t xx; if (s->output_row < 0) return 0; y = s->output_row++; /* This algorithm works over two rows, and outputs the earlier of the two. To make this work: - At row 0 we grab and scrunch two rows. - From row 1 up to the last row we grab one new additional row each time. - At the last row we dither and output, without getting an extra row in. */ for (i = (y == 0) ? 0 : 1; i < 2; i++) { p = s->pixel_row[0]; s->pixel_row[0] = s->pixel_row[1]; s->pixel_row[1] = p; /* If this is the end of the image just ignore that there is now rubbish in pixel_row[1]. Mark that the end has occurred. This row will be properly output, and the next one will fail, with the end of image condition (i.e. returning zero length) */ if (s->resize) { if (image_resize_row(s, s->pixel_row[1], s->output_width*s->bytes_per_pixel) != s->output_width*s->bytes_per_pixel) s->output_row = -1; } else { if (get_and_scrunch_row(s, s->pixel_row[1], s->output_width*s->bytes_per_pixel) != s->output_width*s->bytes_per_pixel) s->output_row = -1; } } /* Apply Floyd-Steinberg dithering to the 8 bit pixels, using a bustrophodontic scan, to reduce the grayscale image to pure black and white */ /* The first and last pixels in each row need special treatment, so we do not step outside the row. */ if ((y & 1)) { x = s->output_width - 1; old_pixel = s->pixel_row[0][x]; new_pixel = find_closest_palette_color(old_pixel); quant_error = old_pixel - new_pixel; s->pixel_row[0][x + 0] = new_pixel; s->pixel_row[0][x - 1] = saturateu8(s->pixel_row[0][x - 1] + (7*quant_error)/16); s->pixel_row[1][x + 0] = saturateu8(s->pixel_row[1][x + 0] + (5*quant_error)/16); s->pixel_row[1][x - 1] = saturateu8(s->pixel_row[1][x - 1] + (1*quant_error)/16); for ( ; x > 0; x--) { old_pixel = s->pixel_row[0][x]; new_pixel = find_closest_palette_color(old_pixel); quant_error = old_pixel - new_pixel; s->pixel_row[0][x + 0] = new_pixel; s->pixel_row[0][x - 1] = saturateu8(s->pixel_row[0][x - 1] + (7*quant_error)/16); s->pixel_row[1][x + 1] = saturateu8(s->pixel_row[1][x + 1] + (3*quant_error)/16); s->pixel_row[1][x + 0] = saturateu8(s->pixel_row[1][x + 0] + (5*quant_error)/16); s->pixel_row[1][x - 1] = saturateu8(s->pixel_row[1][x - 1] + (1*quant_error)/16); } old_pixel = s->pixel_row[0][x]; new_pixel = find_closest_palette_color(old_pixel); quant_error = old_pixel - new_pixel; s->pixel_row[0][x + 0] = new_pixel; s->pixel_row[1][x + 1] = saturateu8(s->pixel_row[1][x + 1] + (3*quant_error)/16); s->pixel_row[1][x + 0] = saturateu8(s->pixel_row[1][x + 0] + (5*quant_error)/16); } else { x = 0; old_pixel = s->pixel_row[0][x]; new_pixel = find_closest_palette_color(old_pixel); quant_error = old_pixel - new_pixel; s->pixel_row[0][x + 0] = new_pixel; s->pixel_row[0][x + 1] = saturateu8(s->pixel_row[0][x + 1] + (7*quant_error)/16); s->pixel_row[1][x + 0] = saturateu8(s->pixel_row[1][x + 0] + (5*quant_error)/16); s->pixel_row[1][x + 1] = saturateu8(s->pixel_row[1][x + 1] + (1*quant_error)/16); for ( ; x < s->output_width - 1; x++) { old_pixel = s->pixel_row[0][x]; new_pixel = find_closest_palette_color(old_pixel); quant_error = old_pixel - new_pixel; s->pixel_row[0][x + 0] = new_pixel; s->pixel_row[0][x + 1] = saturateu8(s->pixel_row[0][x + 1] + (7*quant_error)/16); s->pixel_row[1][x - 1] = saturateu8(s->pixel_row[1][x - 1] + (3*quant_error)/16); s->pixel_row[1][x + 0] = saturateu8(s->pixel_row[1][x + 0] + (5*quant_error)/16); s->pixel_row[1][x + 1] = saturateu8(s->pixel_row[1][x + 1] + (1*quant_error)/16); } old_pixel = s->pixel_row[0][x]; new_pixel = find_closest_palette_color(old_pixel); quant_error = old_pixel - new_pixel; s->pixel_row[0][x + 0] = new_pixel; s->pixel_row[1][x - 1] = saturateu8(s->pixel_row[1][x - 1] + (3*quant_error)/16); s->pixel_row[1][x + 0] = saturateu8(s->pixel_row[1][x + 0] + (5*quant_error)/16); } /* Now bit pack the pixel per byte row into a pixel per bit row. */ for (i = 0, x = 0; x < s->output_width; i++, x += 8) { xx = 0; /* Allow for the possibility that the width is not a multiple of 8 */ limit = (8 <= s->output_width - x) ? 8 : (s->output_width - x); for (j = 0; j < limit; j++) { if (s->pixel_row[0][x + j] <= 128) xx |= (1 << (7 - j)); } buf[i] = xx; } return i; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) image_translate_get_output_width(image_translate_state_t *s) { return s->output_width; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) image_translate_get_output_length(image_translate_state_t *s) { return s->output_length; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(image_translate_state_t *) image_translate_init(image_translate_state_t *s, int input_format, int input_width, int input_length, int output_width, t4_row_read_handler_t row_read_handler, void *row_read_user_data) { int i; if (s == NULL) { if ((s = (image_translate_state_t *) malloc(sizeof(*s))) == NULL) return NULL; } memset(s, 0, sizeof(*s)); s->input_format = input_format; s->input_width = input_width; s->input_length = input_length; s->resize = (output_width > 0); s->output_width = (s->resize) ? output_width : s->input_width; s->output_length = (s->resize) ? s->input_length*s->output_width/s->input_width : s->input_length; switch (s->input_format) { case IMAGE_TRANSLATE_FROM_GRAY_8: s->bytes_per_pixel = 1; break; case IMAGE_TRANSLATE_FROM_GRAY_16: s->bytes_per_pixel = 2; break; case IMAGE_TRANSLATE_FROM_COLOUR_8: s->bytes_per_pixel = 3; break; case IMAGE_TRANSLATE_FROM_COLOUR_16: s->bytes_per_pixel = 6; break; default: s->bytes_per_pixel = 1; break; } /* Allocate the two row buffers we need, using the space requirements we now have */ if (s->resize) { for (i = 0; i < 2; i++) { if ((s->raw_pixel_row[i] = (uint8_t *) malloc(s->input_width*s->bytes_per_pixel)) == NULL) return NULL; memset(s->raw_pixel_row[i], 0, s->input_width*s->bytes_per_pixel); if ((s->pixel_row[i] = (uint8_t *) malloc(s->output_width*sizeof(uint8_t))) == NULL) return NULL; memset(s->pixel_row[i], 0, s->output_width*sizeof(uint8_t)); } } else { for (i = 0; i < 2; i++) { if ((s->pixel_row[i] = (uint8_t *) malloc(s->output_width*s->bytes_per_pixel)) == NULL) return NULL; memset(s->pixel_row[i], 0, s->output_width*s->bytes_per_pixel); } } s->row_read_handler = row_read_handler; s->row_read_user_data = row_read_user_data; s->raw_input_row = 0; s->raw_output_row = 0; s->output_row = 0; return s; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) image_translate_release(image_translate_state_t *s) { int i; for (i = 0; i < 2; i++) { if (s->raw_pixel_row[i]) { free(s->raw_pixel_row[i]); s->raw_pixel_row[i] = NULL; } if (s->pixel_row[i]) { free(s->pixel_row[i]); s->pixel_row[i] = NULL; } } return 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) image_translate_free(image_translate_state_t *s) { int res; res = image_translate_release(s); free(s); return res; } /*- End of function --------------------------------------------------------*/ /*- End of file ------------------------------------------------------------*/