freeswitch/src/switch_time.c

1931 lines
46 KiB
C

/*
* FreeSWITCH Modular Media Switching Software Library / Soft-Switch Application
* Copyright (C) 2005-2009, Anthony Minessale II <anthm@freeswitch.org>
*
* Version: MPL 1.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is FreeSWITCH Modular Media Switching Software Library / Soft-Switch Application
*
* The Initial Developer of the Original Code is
* Anthony Minessale II <anthm@freeswitch.org>
* Portions created by the Initial Developer are Copyright (C)
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Anthony Minessale II <anthm@freeswitch.org>
* Massimo Cetra <devel@navynet.it> - Timezone functionality
*
*
* softtimer.c -- Software Timer Module
*
*/
#include <switch.h>
#include <stdio.h>
#include "private/switch_core_pvt.h"
//#if defined(DARWIN)
#define DISABLE_1MS_COND
//#endif
#ifndef UINT32_MAX
#define UINT32_MAX 0xffffffff
#endif
#define MAX_TICK UINT32_MAX - 1024
#define MAX_ELEMENTS 3600
#define IDLE_SPEED 100
#if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC)
static int MONO = 1;
#else
static int MONO = 0;
#endif
#if defined(HAVE_CLOCK_NANOSLEEP)
static int NANO = 1;
#else
static int NANO = 0;
#endif
static int OFFSET = 0;
static int COND = 0;
static int MATRIX = 1;
static int STEP_MS = 10;
static int STEP_MIC = 10000;
static uint32_t TICK_PER_SEC = 1000;
static int MS_PER_TICK = 10;
static switch_memory_pool_t *module_pool = NULL;
static struct {
int32_t RUNNING;
int32_t STARTED;
int32_t use_cond_yield;
switch_mutex_t *mutex;
} globals;
#ifdef WIN32
#undef SWITCH_MOD_DECLARE_DATA
#define SWITCH_MOD_DECLARE_DATA __declspec(dllexport)
#endif
SWITCH_MODULE_LOAD_FUNCTION(softtimer_load);
SWITCH_MODULE_SHUTDOWN_FUNCTION(softtimer_shutdown);
SWITCH_MODULE_RUNTIME_FUNCTION(softtimer_runtime);
SWITCH_MODULE_DEFINITION(CORE_SOFTTIMER_MODULE, softtimer_load, softtimer_shutdown, softtimer_runtime);
struct timer_private {
switch_size_t reference;
switch_size_t start;
uint32_t roll;
uint32_t ready;
};
typedef struct timer_private timer_private_t;
struct timer_matrix {
switch_size_t tick;
uint32_t count;
uint32_t roll;
switch_mutex_t *mutex;
switch_thread_cond_t *cond;
switch_thread_rwlock_t *rwlock;
};
typedef struct timer_matrix timer_matrix_t;
static timer_matrix_t TIMER_MATRIX[MAX_ELEMENTS + 1];
static void os_yield(void)
{
#if defined(WIN32)
SwitchToThread();
#else
sched_yield();
#endif
}
static void do_sleep(switch_interval_time_t t)
{
#if defined(HAVE_CLOCK_NANOSLEEP) || defined(DARWIN)
struct timespec ts;
#endif
#if defined(WIN32)
if (t < 1000) {
t = 1000;
}
#endif
#if !defined(DARWIN)
if (t > 100000 || !NANO) {
apr_sleep(t);
return;
}
#endif
#if defined(HAVE_CLOCK_NANOSLEEP)
t -= OFFSET;
ts.tv_sec = t / 1000000;
ts.tv_nsec = ((t % 1000000) * 1000);
clock_nanosleep(CLOCK_MONOTONIC, 0, &ts, NULL);
#elif defined(DARWIN)
ts.tv_sec = t / APR_USEC_PER_SEC;
ts.tv_nsec = (t % APR_USEC_PER_SEC) * 1000;
nanosleep(&ts, NULL);
#else
apr_sleep(t);
#endif
#if defined(DARWIN)
sched_yield();
#endif
}
static switch_interval_time_t average_time(switch_interval_time_t t, int reps)
{
int x = 0;
switch_time_t start, stop, sum = 0;
for(x = 0; x < reps; x++) {
start = switch_time_now();
do_sleep(t);
stop = switch_time_now();
sum += (stop - start);
}
return sum / reps;
}
#define calc_step() if (step > 11) step -= 10; else if (step > 1) step--
SWITCH_DECLARE(void) switch_time_calibrate_clock(void)
{
int x;
switch_interval_time_t avg, val = 1000, want = 1000;
int over = 0, under = 0, good = 0, step = 50, diff = 0, retry = 0, lastgood = 0;
#ifdef HAVE_CLOCK_GETRES
struct timespec ts;
clock_getres(CLOCK_MONOTONIC, &ts);
if (ts.tv_nsec / 1000 > 1500) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_WARNING,
"Timer resolution of %ld microseconds detected!\n"
"Do you have your kernel timer set to higher than 1 kHz? You may experience audio problems.\n", ts.tv_nsec / 1000);
do_sleep(5000000);
switch_time_set_cond_yield(SWITCH_TRUE);
return;
}
#endif
top:
val = 1000;
step = 50;
over = under = good = 0;
OFFSET = 0;
for (x = 0; x < 100; x++) {
avg = average_time(val, 50);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_CONSOLE, "Test: %ld Average: %ld Step: %d\n", (long)val, (long)avg, step);
diff = abs((int)(want - avg));
if (diff > 1500) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_WARNING,
"Abnormally large timer gap %d detected!\n"
"Do you have your kernel timer set to higher than 1 kHz? You may experience audio problems.\n", diff);
do_sleep(5000000);
switch_time_set_cond_yield(SWITCH_TRUE);
return;
}
if (diff <= 100) {
lastgood = (int) val;
}
if (diff <= 2) {
under = over = 0;
lastgood = (int) val;
if (++good > 10) {
break;
}
} else if (avg > want) {
if (under) {calc_step();}
under = good = 0;
if ((val - step) < 0) {
if (++retry > 2) break;
goto top;
}
val -= step;
over++;
} else if (avg < want) {
if (over) {calc_step();}
over = good = 0;
if ((val - step) < 0) {
if (++retry > 2) break;
goto top;
}
val += step;
under++;
}
}
if (good >= 10) {
OFFSET = (int)(want - val);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_CONSOLE, "Timer offset of %d calculated\n", OFFSET);
} else if (lastgood) {
OFFSET = (int)(want - lastgood);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_CONSOLE, "Timer offset of %d calculated (fallback)\n", OFFSET);
switch_time_set_cond_yield(SWITCH_TRUE);
} else {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_CONSOLE, "Timer offset NOT calculated\n");
switch_time_set_cond_yield(SWITCH_TRUE);
}
}
SWITCH_DECLARE(switch_time_t) switch_micro_time_now(void)
{
return (globals.RUNNING == 1 && runtime.timestamp) ? runtime.timestamp : switch_time_now();
}
SWITCH_DECLARE(time_t) switch_epoch_time_now(time_t *t)
{
time_t now = switch_micro_time_now() / APR_USEC_PER_SEC;
if (t) {
*t = now;
}
return now;
}
SWITCH_DECLARE(void) switch_time_set_monotonic(switch_bool_t enable)
{
MONO = enable ? 1 : 0;
switch_time_sync();
}
SWITCH_DECLARE(void) switch_time_set_matrix(switch_bool_t enable)
{
MATRIX = enable ? 1 : 0;
switch_time_sync();
}
SWITCH_DECLARE(void) switch_time_set_nanosleep(switch_bool_t enable)
{
#if defined(HAVE_CLOCK_NANOSLEEP)
NANO = enable ? 1 : 0;
#endif
}
SWITCH_DECLARE(void) switch_time_set_cond_yield(switch_bool_t enable)
{
COND = enable ? 1 : 0;
if (COND) {
MATRIX = 1;
}
switch_time_sync();
}
static switch_time_t time_now(int64_t offset)
{
switch_time_t now;
#if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC)
if (MONO) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
now = ts.tv_sec * APR_USEC_PER_SEC + (ts.tv_nsec / 1000) + offset;
} else {
#endif
now = switch_time_now();
#if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC)
}
#endif
return now;
}
SWITCH_DECLARE(void) switch_time_sync(void)
{
runtime.reference = switch_time_now();
runtime.offset = runtime.reference - time_now(0);
runtime.reference = time_now(runtime.offset);
}
SWITCH_DECLARE(void) switch_micro_sleep(switch_interval_time_t t)
{
do_sleep(t);
}
SWITCH_DECLARE(void) switch_sleep(switch_interval_time_t t)
{
if (globals.RUNNING != 1 || t < 1000 || t >= 10000) {
do_sleep(t);
return;
}
#ifndef DISABLE_1MS_COND
if (globals.use_cond_yield == 1) {
switch_cond_yield(t);
return;
}
#endif
do_sleep(t);
}
SWITCH_DECLARE(void) switch_cond_next(void)
{
if (session_manager.session_count > 1000) {
os_yield();
return;
}
#ifdef DISABLE_1MS_COND
do_sleep(1000);
#else
if (globals.RUNNING != 1 || !runtime.timestamp || globals.use_cond_yield != 1) {
do_sleep(1000);
return;
}
switch_mutex_lock(TIMER_MATRIX[1].mutex);
switch_thread_cond_wait(TIMER_MATRIX[1].cond, TIMER_MATRIX[1].mutex);
switch_mutex_unlock(TIMER_MATRIX[1].mutex);
#endif
}
SWITCH_DECLARE(void) switch_cond_yield(switch_interval_time_t t)
{
switch_time_t want;
if (!t) return;
if (globals.RUNNING != 1 || !runtime.timestamp || globals.use_cond_yield != 1) {
do_sleep(t);
return;
}
want = runtime.timestamp + t;
while(globals.RUNNING == 1 && globals.use_cond_yield == 1 && runtime.timestamp < want) {
switch_mutex_lock(TIMER_MATRIX[1].mutex);
if (runtime.timestamp < want) {
switch_thread_cond_wait(TIMER_MATRIX[1].cond, TIMER_MATRIX[1].mutex);
}
switch_mutex_unlock(TIMER_MATRIX[1].mutex);
}
}
static switch_status_t timer_init(switch_timer_t *timer)
{
timer_private_t *private_info;
int sanity = 0;
while (globals.STARTED == 0) {
do_sleep(100000);
if (++sanity == 300) {
abort();
}
}
if (globals.RUNNING != 1 || !globals.mutex || timer->interval < 1) {
return SWITCH_STATUS_FALSE;
}
if ((private_info = switch_core_alloc(timer->memory_pool, sizeof(*private_info)))) {
switch_mutex_lock(globals.mutex);
if (!TIMER_MATRIX[timer->interval].mutex) {
switch_mutex_init(&TIMER_MATRIX[timer->interval].mutex, SWITCH_MUTEX_NESTED, module_pool);
switch_thread_cond_create(&TIMER_MATRIX[timer->interval].cond, module_pool);
}
TIMER_MATRIX[timer->interval].count++;
switch_mutex_unlock(globals.mutex);
timer->private_info = private_info;
private_info->start = private_info->reference = TIMER_MATRIX[timer->interval].tick;
private_info->roll = TIMER_MATRIX[timer->interval].roll;
private_info->ready = 1;
if (timer->interval > 0 && timer->interval < MS_PER_TICK) {
MS_PER_TICK = timer->interval;
STEP_MS = 1;
STEP_MIC = 1000;
TICK_PER_SEC = 10000;
switch_time_sync();
}
return SWITCH_STATUS_SUCCESS;
}
return SWITCH_STATUS_MEMERR;
}
#define check_roll() if (private_info->roll < TIMER_MATRIX[timer->interval].roll) { \
private_info->roll++; \
private_info->reference = private_info->start = TIMER_MATRIX[timer->interval].tick; \
} \
static switch_status_t timer_step(switch_timer_t *timer)
{
timer_private_t *private_info = timer->private_info;
uint64_t samples;
if (globals.RUNNING != 1 || private_info->ready == 0) {
return SWITCH_STATUS_FALSE;
}
check_roll();
samples = timer->samples * (private_info->reference - private_info->start);
if (samples > UINT32_MAX) {
private_info->start = private_info->reference;
samples = timer->samples;
}
timer->samplecount = (uint32_t) samples;
private_info->reference++;
return SWITCH_STATUS_SUCCESS;
}
static switch_status_t timer_sync(switch_timer_t *timer)
{
timer_private_t *private_info = timer->private_info;
if (globals.RUNNING != 1 || private_info->ready == 0) {
return SWITCH_STATUS_FALSE;
}
/* sync the clock */
private_info->reference = timer->tick = TIMER_MATRIX[timer->interval].tick;
/* apply timestamp */
if (timer_step(timer) == SWITCH_STATUS_SUCCESS) {
/* push the reference into the future to prevent collision */
private_info->reference++;
}
return SWITCH_STATUS_SUCCESS;
}
static switch_status_t timer_next(switch_timer_t *timer)
{
timer_private_t *private_info = timer->private_info;
#ifdef DISABLE_1MS_COND
int cond_index = timer->interval;
#else
int cond_index = 1;
#endif
int delta = (int)(private_info->reference - TIMER_MATRIX[timer->interval].tick);
/* sync up timer if it's not been called for a while otherwise it will return instantly several times until it catches up */
if (delta < -1) {
private_info->reference = timer->tick = TIMER_MATRIX[timer->interval].tick;
}
timer_step(timer);
if (!MATRIX) {
do_sleep(1000 * timer->interval);
goto end;
}
while (globals.RUNNING == 1 && private_info->ready && TIMER_MATRIX[timer->interval].tick < private_info->reference) {
check_roll();
if (session_manager.session_count > runtime.tipping_point) {
os_yield();
} else {
if (globals.use_cond_yield == 1) {
switch_mutex_lock(TIMER_MATRIX[cond_index].mutex);
if (TIMER_MATRIX[timer->interval].tick < private_info->reference) {
switch_thread_cond_wait(TIMER_MATRIX[cond_index].cond, TIMER_MATRIX[cond_index].mutex);
}
switch_mutex_unlock(TIMER_MATRIX[cond_index].mutex);
} else {
do_sleep(1000);
}
}
}
end:
return globals.RUNNING == 1 ? SWITCH_STATUS_SUCCESS : SWITCH_STATUS_FALSE;
}
static switch_status_t timer_check(switch_timer_t *timer, switch_bool_t step)
{
timer_private_t *private_info = timer->private_info;
switch_status_t status = SWITCH_STATUS_SUCCESS;
if (globals.RUNNING != 1 || !private_info->ready) {
return SWITCH_STATUS_SUCCESS;
}
check_roll();
timer->tick = TIMER_MATRIX[timer->interval].tick;
if (timer->tick < private_info->reference) {
timer->diff = private_info->reference - timer->tick;
} else {
timer->diff = 0;
}
if (timer->diff) {
status = SWITCH_STATUS_FALSE;
} else if (step) {
timer_step(timer);
}
return status;
}
static switch_status_t timer_destroy(switch_timer_t *timer)
{
timer_private_t *private_info = timer->private_info;
if (timer->interval < MAX_ELEMENTS) {
switch_mutex_lock(globals.mutex);
TIMER_MATRIX[timer->interval].count--;
if (TIMER_MATRIX[timer->interval].count == 0) {
TIMER_MATRIX[timer->interval].tick = 0;
}
switch_mutex_unlock(globals.mutex);
}
if (private_info) {
private_info->ready = 0;
}
return SWITCH_STATUS_SUCCESS;
}
SWITCH_MODULE_RUNTIME_FUNCTION(softtimer_runtime)
{
switch_time_t too_late = STEP_MIC * 1000;
uint32_t current_ms = 0;
uint32_t x, tick = 0;
switch_time_t ts = 0, last = 0;
int fwd_errs = 0, rev_errs = 0;
#ifdef HAVE_CPU_SET_MACROS
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(0, &set);
sched_setaffinity(0, sizeof(set), &set);
#endif
switch_time_sync();
globals.STARTED = globals.RUNNING = 1;
switch_mutex_lock(runtime.throttle_mutex);
runtime.sps = runtime.sps_total;
switch_mutex_unlock(runtime.throttle_mutex);
if (MONO) {
int loops;
for (loops = 0; loops < 3; loops++) {
ts = time_now(0);
/* if it returns the same value every time it won't be of much use. */
if (ts == last) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_CRIT, "Broken MONOTONIC Clock Detected!, Support Disabled.\n");
MONO = 0;
NANO = 0;
runtime.reference = switch_time_now();
runtime.initiated = runtime.reference;
break;
}
do_sleep(STEP_MIC);
last = ts;
}
}
ts = 0;
last = 0;
fwd_errs = rev_errs = 0;
#ifndef DISABLE_1MS_COND
if (!NANO) {
switch_mutex_init(&TIMER_MATRIX[1].mutex, SWITCH_MUTEX_NESTED, module_pool);
switch_thread_cond_create(&TIMER_MATRIX[1].cond, module_pool);
}
#endif
switch_time_sync();
globals.use_cond_yield = COND;
globals.RUNNING = 1;
while (globals.RUNNING == 1) {
runtime.reference += STEP_MIC;
while ((ts = time_now(runtime.offset)) < runtime.reference) {
if (ts < last) {
if (MONO) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_CRIT, "Virtual Migration Detected! Syncing Clock\n");
switch_time_sync();
} else {
int64_t diff = (int64_t) (ts - last);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_CRIT, "Reverse Clock Skew Detected!\n");
runtime.reference = switch_time_now();
current_ms = 0;
tick = 0;
runtime.initiated += diff;
rev_errs++;
}
} else {
rev_errs = 0;
}
if (session_manager.session_count > runtime.tipping_point) {
os_yield();
} else {
do_sleep(1000);
}
last = ts;
}
if (ts > (runtime.reference + too_late)) {
if (MONO) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_CRIT, "Virtual Migration Detected! Syncing Clock\n");
switch_time_sync();
} else {
switch_time_t diff = ts - runtime.reference - STEP_MIC;
#ifndef WIN32
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_CRIT, "Forward Clock Skew Detected!\n");
#endif
fwd_errs++;
runtime.reference = switch_time_now();
current_ms = 0;
tick = 0;
runtime.initiated += diff;
}
} else {
fwd_errs = 0;
}
if (fwd_errs > 9 || rev_errs > 9) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_CRIT, "Auto Re-Syncing clock.\n");
switch_time_sync();
fwd_errs = rev_errs = 0;
}
runtime.timestamp = ts;
current_ms += STEP_MS;
tick += STEP_MS;
if (tick >= TICK_PER_SEC) {
if (runtime.sps <= 0) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_CRIT, "Over Session Rate of %d!\n", runtime.sps_total);
}
switch_mutex_lock(runtime.throttle_mutex);
runtime.sps_last = runtime.sps_total - runtime.sps;
runtime.sps = runtime.sps_total;
switch_mutex_unlock(runtime.throttle_mutex);
tick = 0;
}
#ifndef DISABLE_1MS_COND
TIMER_MATRIX[1].tick++;
if (switch_mutex_trylock(TIMER_MATRIX[1].mutex) == SWITCH_STATUS_SUCCESS) {
switch_thread_cond_broadcast(TIMER_MATRIX[1].cond);
switch_mutex_unlock(TIMER_MATRIX[1].mutex);
}
if (TIMER_MATRIX[1].tick == MAX_TICK) {
TIMER_MATRIX[1].tick = 0;
TIMER_MATRIX[1].roll++;
}
#endif
if (MATRIX && (current_ms % MS_PER_TICK) == 0) {
for (x = MS_PER_TICK; x <= MAX_ELEMENTS; x += MS_PER_TICK) {
if ((current_ms % x) == 0) {
if (TIMER_MATRIX[x].count) {
TIMER_MATRIX[x].tick++;
#ifdef DISABLE_1MS_COND
if (TIMER_MATRIX[x].mutex && switch_mutex_trylock(TIMER_MATRIX[x].mutex) == SWITCH_STATUS_SUCCESS) {
switch_thread_cond_broadcast(TIMER_MATRIX[x].cond);
switch_mutex_unlock(TIMER_MATRIX[x].mutex);
}
#endif
if (TIMER_MATRIX[x].tick == MAX_TICK) {
TIMER_MATRIX[x].tick = 0;
TIMER_MATRIX[x].roll++;
}
}
}
}
}
if (current_ms == MAX_ELEMENTS) {
current_ms = 0;
}
}
globals.use_cond_yield = 0;
for (x = MS_PER_TICK; x <= MAX_ELEMENTS; x += MS_PER_TICK) {
if (TIMER_MATRIX[x].mutex && switch_mutex_trylock(TIMER_MATRIX[x].mutex) == SWITCH_STATUS_SUCCESS) {
switch_thread_cond_broadcast(TIMER_MATRIX[x].cond);
switch_mutex_unlock(TIMER_MATRIX[x].mutex);
}
}
switch_mutex_lock(globals.mutex);
globals.RUNNING = 0;
switch_mutex_unlock(globals.mutex);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_CONSOLE, "Soft timer thread exiting.\n");
return SWITCH_STATUS_TERM;
}
/*
This converts a struct tm to a switch_time_exp_t
We have to use UNIX structures to do our exams
and use switch_* functions for the output.
*/
static void tm2switchtime(struct tm * tm, switch_time_exp_t *xt )
{
if (!xt || !tm) {
return;
}
memset( xt, 0, sizeof(xt) );
xt->tm_sec = tm->tm_sec;
xt->tm_min = tm->tm_min;
xt->tm_hour = tm->tm_hour;
xt->tm_mday = tm->tm_mday;
xt->tm_mon = tm->tm_mon;
xt->tm_year = tm->tm_year;
xt->tm_wday = tm->tm_wday;
xt->tm_yday = tm->tm_yday;
xt->tm_isdst = tm->tm_isdst;
#if defined(HAVE_STRUCT_TM_TM_GMTOFF)
xt->tm_gmtoff = tm->tm_gmtoff;
#endif
return;
}
/* **************************************************************************
LOADING OF THE XML DATA - HASH TABLE & MEMORY POOL MANAGEMENT
************************************************************************** */
typedef struct {
switch_memory_pool_t *pool;
switch_hash_t *hash;
} switch_timezones_list_t;
static switch_timezones_list_t TIMEZONES_LIST = { 0 };
static switch_event_node_t *NODE = NULL;
const char *switch_lookup_timezone( const char *tz_name )
{
char *value = NULL;
if ( tz_name && (value = switch_core_hash_find(TIMEZONES_LIST.hash, tz_name))==NULL ) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Timezone '%s' not found!\n", tz_name);
}
return value;
}
void switch_load_timezones(switch_bool_t reload)
{
switch_xml_t xml = NULL, x_lists = NULL, x_list = NULL, cfg = NULL;
unsigned total = 0;
if (TIMEZONES_LIST.hash) {
switch_core_hash_destroy(&TIMEZONES_LIST.hash);
}
if (TIMEZONES_LIST.pool) {
switch_core_destroy_memory_pool(&TIMEZONES_LIST.pool);
}
memset(&TIMEZONES_LIST, 0, sizeof(TIMEZONES_LIST));
switch_core_new_memory_pool(&TIMEZONES_LIST.pool);
switch_core_hash_init(&TIMEZONES_LIST.hash, TIMEZONES_LIST.pool);
if ((xml = switch_xml_open_cfg("timezones.conf", &cfg, NULL))) {
if ((x_lists = switch_xml_child(cfg, "timezones"))) {
for (x_list = switch_xml_child(x_lists, "zone"); x_list; x_list = x_list->next) {
const char *name = switch_xml_attr(x_list, "name");
const char *value= switch_xml_attr(x_list, "value");
if (zstr(name)) {
continue;
}
if (zstr(value)) {
continue;
}
switch_core_hash_insert(TIMEZONES_LIST.hash,
name,
switch_core_strdup(TIMEZONES_LIST.pool, value) );
total++;
}
}
switch_xml_free(xml);
}
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_INFO, "Timezone %sloaded %d definitions\n", reload ? "re" : "", total);
}
static void event_handler(switch_event_t *event)
{
switch_mutex_lock(globals.mutex);
switch_load_timezones(1);
switch_mutex_unlock(globals.mutex);
}
static void tztime(const time_t * const timep, const char *tzstring, struct tm * const tmp );
SWITCH_DECLARE(switch_status_t) switch_time_exp_tz_name(const char *tz, switch_time_exp_t *tm, switch_time_t thetime)
{
struct tm xtm = { 0 };
const char *tz_name = tz;
const char *tzdef;
time_t timep;
if (!thetime) {
thetime = switch_micro_time_now();
}
timep = (thetime) / (int64_t) (1000000);
if (!zstr(tz_name)) {
tzdef = switch_lookup_timezone( tz_name );
} else {
/* We set the default timezone to GMT. */
tz_name="GMT";
tzdef="GMT";
}
if (tzdef) { /* The lookup of the zone may fail. */
tztime( &timep, tzdef, &xtm );
tm2switchtime( &xtm, tm);
return SWITCH_STATUS_SUCCESS;
}
return SWITCH_STATUS_FALSE;
}
SWITCH_DECLARE(switch_status_t) switch_strftime_tz(const char *tz, const char *format, char *date, size_t len, switch_time_t thetime)
{
time_t timep;
const char *tz_name = tz;
const char *tzdef;
switch_size_t retsize;
struct tm tm = { 0 };
switch_time_exp_t stm;
if (!thetime) {
thetime = switch_micro_time_now();
}
timep = (thetime) / (int64_t) (1000000);
if (!zstr(tz_name)) {
tzdef = switch_lookup_timezone( tz_name );
} else {
/* We set the default timezone to GMT. */
tz_name="GMT";
tzdef="GMT";
}
if (tzdef) { /* The lookup of the zone may fail. */
tztime( &timep, tzdef, &tm );
tm2switchtime( &tm, &stm );
switch_strftime_nocheck(date, &retsize, len, zstr(format) ? "%Y-%m-%d %T" : format, &stm);
if (!zstr_buf(date)) {
return SWITCH_STATUS_SUCCESS;
}
}
return SWITCH_STATUS_FALSE;
}
SWITCH_MODULE_LOAD_FUNCTION(softtimer_load)
{
switch_timer_interface_t *timer_interface;
module_pool = pool;
#if defined(WIN32)
timeBeginPeriod(1);
#endif
memset(&globals, 0, sizeof(globals));
switch_mutex_init(&globals.mutex, SWITCH_MUTEX_NESTED, module_pool);
if ((switch_event_bind_removable(modname, SWITCH_EVENT_RELOADXML, NULL, event_handler, NULL, &NODE) != SWITCH_STATUS_SUCCESS)) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Couldn't bind!\n");
}
switch_load_timezones(0);
/* connect my internal structure to the blank pointer passed to me */
*module_interface = switch_loadable_module_create_module_interface(pool, modname);
timer_interface = switch_loadable_module_create_interface(*module_interface, SWITCH_TIMER_INTERFACE);
timer_interface->interface_name = "soft";
timer_interface->timer_init = timer_init;
timer_interface->timer_next = timer_next;
timer_interface->timer_step = timer_step;
timer_interface->timer_sync = timer_sync;
timer_interface->timer_check = timer_check;
timer_interface->timer_destroy = timer_destroy;
if (!switch_test_flag((&runtime), SCF_USE_CLOCK_RT)) {
switch_time_set_nanosleep(SWITCH_FALSE);
}
if (switch_test_flag((&runtime), SCF_USE_COND_TIMING)) {
switch_time_set_cond_yield(SWITCH_TRUE);
}
if (switch_test_flag((&runtime), SCF_CALIBRATE_CLOCK)) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_CONSOLE, "Calibrating timer, please wait...\n");
switch_time_calibrate_clock();
} else {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_CONSOLE, "Clock calibration disabled.\n");
}
/* indicate that the module should continue to be loaded */
return SWITCH_STATUS_SUCCESS;
}
SWITCH_MODULE_SHUTDOWN_FUNCTION(softtimer_shutdown)
{
globals.use_cond_yield = 0;
if (globals.RUNNING == 1) {
switch_mutex_lock(globals.mutex);
globals.RUNNING = -1;
switch_mutex_unlock(globals.mutex);
while (globals.RUNNING == -1) {
do_sleep(10000);
}
}
#if defined(WIN32)
timeEndPeriod(1);
#endif
if (TIMEZONES_LIST.hash) {
switch_core_hash_destroy(&TIMEZONES_LIST.hash);
}
if (TIMEZONES_LIST.pool) {
switch_core_destroy_memory_pool(&TIMEZONES_LIST.pool);
}
return SWITCH_STATUS_SUCCESS;
}
/*
* This file was originally written for NetBSD and is in the public domain,
* so clarified as of 1996-06-05 by Arthur David Olson (arthur_david_olson@nih.gov).
*
* Iw was modified by Massimo Cetra in order to be used with Callweaver and Freeswitch.
*/
//#define TESTING_IT 1
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <string.h>
#include <assert.h>
#ifdef TESTING_IT
#include <sys/time.h>
#endif
#ifndef TRUE
#define TRUE 1
#endif /* !defined TRUE */
#ifndef FALSE
#define FALSE 0
#endif /* !defined FALSE */
#ifndef TZ_MAX_TIMES
/*
** The TZ_MAX_TIMES value below is enough to handle a bit more than a
** year's worth of solar time (corrected daily to the nearest second) or
** 138 years of Pacific Presidential Election time
** (where there are three time zone transitions every fourth year).
*/
#define TZ_MAX_TIMES 370
#endif /* !defined TZ_MAX_TIMES */
#ifndef TZ_MAX_TYPES
#ifndef NOSOLAR
#define TZ_MAX_TYPES 256 /* Limited by what (unsigned char)'s can hold */
#endif /* !defined NOSOLAR */
#ifdef NOSOLAR
/*
** Must be at least 14 for Europe/Riga as of Jan 12 1995,
** as noted by Earl Chew <earl@hpato.aus.hp.com>.
*/
#define TZ_MAX_TYPES 20 /* Maximum number of local time types */
#endif /* !defined NOSOLAR */
#endif /* !defined TZ_MAX_TYPES */
#ifndef TZ_MAX_CHARS
#define TZ_MAX_CHARS 50 /* Maximum number of abbreviation characters */
/* (limited by what unsigned chars can hold) */
#endif /* !defined TZ_MAX_CHARS */
#ifndef TZ_MAX_LEAPS
#define TZ_MAX_LEAPS 50 /* Maximum number of leap second corrections */
#endif /* !defined TZ_MAX_LEAPS */
#ifdef TZNAME_MAX
#define MY_TZNAME_MAX TZNAME_MAX
#endif /* defined TZNAME_MAX */
#ifndef TZNAME_MAX
#define MY_TZNAME_MAX 255
#endif /* !defined TZNAME_MAX */
#define SECSPERMIN 60
#define MINSPERHOUR 60
#define HOURSPERDAY 24
#define DAYSPERWEEK 7
#define DAYSPERNYEAR 365
#define DAYSPERLYEAR 366
#define SECSPERHOUR (SECSPERMIN * MINSPERHOUR)
#define SECSPERDAY ((long) SECSPERHOUR * HOURSPERDAY)
#define MONSPERYEAR 12
#define JULIAN_DAY 0 /* Jn - Julian day */
#define DAY_OF_YEAR 1 /* n - day of year */
#define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
#define EPOCH_YEAR 1970
#define EPOCH_WDAY TM_THURSDAY
#ifndef TZ_MAX_TIMES
/*
** The TZ_MAX_TIMES value below is enough to handle a bit more than a
** year's worth of solar time (corrected daily to the nearest second) or
** 138 years of Pacific Presidential Election time
** (where there are three time zone transitions every fourth year).
*/
#define TZ_MAX_TIMES 370
#endif /* !defined TZ_MAX_TIMES */
#ifndef TZDEFRULES
#define TZDEFRULES "posixrules"
#endif /* !defined TZDEFRULES */
/*
** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
** We default to US rules as of 1999-08-17.
** POSIX 1003.1 section 8.1.1 says that the default DST rules are
** implementation dependent; for historical reasons, US rules are a
** common default.
*/
#ifndef TZDEFRULESTRING
#define TZDEFRULESTRING ",M4.1.0,M10.5.0"
#endif /* !defined TZDEFDST */
/* Unlike <ctype.h>'s isdigit, this also works if c < 0 | c > UCHAR_MAX. */
#define is_digit(c) ((unsigned)(c) - '0' <= 9)
#define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
#define isleap(y) (((y) % 4) == 0 && (((y) % 100) != 0 || ((y) % 400) == 0))
/*
** INITIALIZE(x)
*/
#ifndef GNUC_or_lint
#ifdef lint
#define GNUC_or_lint
#endif /* defined lint */
#ifndef lint
#ifdef __GNUC__
#define GNUC_or_lint
#endif /* defined __GNUC__ */
#endif /* !defined lint */
#endif /* !defined GNUC_or_lint */
#ifdef WIN32
#define GNUC_or_lint
#endif
#ifndef INITIALIZE
#ifdef GNUC_or_lint
#define INITIALIZE(x) ((x) = 0)
#endif /* defined GNUC_or_lint */
#ifndef GNUC_or_lint
#define INITIALIZE(x)
#endif /* !defined GNUC_or_lint */
#endif /* !defined INITIALIZE */
#define TM_SUNDAY 0
#define TM_MONDAY 1
#define TM_TUESDAY 2
#define TM_WEDNESDAY 3
#define TM_THURSDAY 4
#define TM_FRIDAY 5
#define TM_SATURDAY 6
#define TM_JANUARY 0
#define TM_FEBRUARY 1
#define TM_MARCH 2
#define TM_APRIL 3
#define TM_MAY 4
#define TM_JUNE 5
#define TM_JULY 6
#define TM_AUGUST 7
#define TM_SEPTEMBER 8
#define TM_OCTOBER 9
#define TM_NOVEMBER 10
#define TM_DECEMBER 11
#define TM_YEAR_BASE 1900
#define EPOCH_YEAR 1970
#define EPOCH_WDAY TM_THURSDAY
/* **************************************************************************
************************************************************************** */
static const char gmt[] = "GMT";
#define CHARS_DEF BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))
struct rule {
int r_type; /* type of rule--see below */
int r_day; /* day number of rule */
int r_week; /* week number of rule */
int r_mon; /* month number of rule */
long r_time; /* transition time of rule */
};
struct ttinfo { /* time type information */
long tt_gmtoff; /* UTC offset in seconds */
int tt_isdst; /* used to set tm_isdst */
int tt_abbrind; /* abbreviation list index */
int tt_ttisstd; /* TRUE if transition is std time */
int tt_ttisgmt; /* TRUE if transition is UTC */
};
struct lsinfo { /* leap second information */
time_t ls_trans; /* transition time */
long ls_corr; /* correction to apply */
};
struct state {
int leapcnt;
int timecnt;
int typecnt;
int charcnt;
time_t ats[TZ_MAX_TIMES];
unsigned char types[TZ_MAX_TIMES];
struct ttinfo ttis[TZ_MAX_TYPES];
char chars[/* LINTED constant */CHARS_DEF];
struct lsinfo lsis[TZ_MAX_LEAPS];
};
static const int mon_lengths[2][MONSPERYEAR] = {
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
};
static const int year_lengths[2] = {
DAYSPERNYEAR, DAYSPERLYEAR
};
/* **************************************************************************
************************************************************************** */
/*
Given a pointer into a time zone string, scan until a character that is not
a valid character in a zone name is found. Return a pointer to that
character.
*/
static const char *getzname(register const char *strp)
{
register char c;
while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
c != '+')
++strp;
return strp;
}
/*
Given a pointer into a time zone string, extract a number from that string.
Check that the number is within a specified range; if it is not, return
NULL.
Otherwise, return a pointer to the first character not part of the number.
*/
static const char *getnum(register const char *strp, int * const nump, const int min, const int max)
{
register char c;
register int num;
if (strp == NULL || !is_digit(c = *strp))
return NULL;
num = 0;
do {
num = num * 10 + (c - '0');
if (num > max)
return NULL; /* illegal value */
c = *++strp;
} while (is_digit(c));
if (num < min)
return NULL; /* illegal value */
*nump = num;
return strp;
}
/*
Given a pointer into a time zone string, extract a number of seconds,
in hh[:mm[:ss]] form, from the string.
If any error occurs, return NULL.
Otherwise, return a pointer to the first character not part of the number
of seconds.
*/
static const char *getsecs(register const char *strp, long * const secsp)
{
int num;
/*
** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
** "M10.4.6/26", which does not conform to Posix,
** but which specifies the equivalent of
** ``02:00 on the first Sunday on or after 23 Oct''.
*/
strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
if (strp == NULL)
return NULL;
*secsp = num * (long) SECSPERHOUR;
if (*strp == ':') {
++strp;
strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
if (strp == NULL)
return NULL;
*secsp += num * SECSPERMIN;
if (*strp == ':') {
++strp;
/* `SECSPERMIN' allows for leap seconds. */
strp = getnum(strp, &num, 0, SECSPERMIN);
if (strp == NULL)
return NULL;
*secsp += num;
}
}
return strp;
}
/*
Given a pointer into a time zone string, extract an offset, in
[+-]hh[:mm[:ss]] form, from the string.
If any error occurs, return NULL.
Otherwise, return a pointer to the first character not part of the time.
*/
static const char *getoffset(register const char *strp, long * const offsetp)
{
register int neg = 0;
if (*strp == '-') {
neg = 1;
++strp;
} else if (*strp == '+')
++strp;
strp = getsecs(strp, offsetp);
if (strp == NULL)
return NULL; /* illegal time */
if (neg)
*offsetp = -*offsetp;
return strp;
}
/*
Given a pointer into a time zone string, extract a rule in the form
date[/time]. See POSIX section 8 for the format of "date" and "time".
If a valid rule is not found, return NULL.
Otherwise, return a pointer to the first character not part of the rule.
*/
static const char *getrule(const char *strp, register struct rule * const rulep)
{
if (*strp == 'J') {
/*
** Julian day.
*/
rulep->r_type = JULIAN_DAY;
++strp;
strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
} else if (*strp == 'M') {
/*
** Month, week, day.
*/
rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
++strp;
strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
if (strp == NULL)
return NULL;
if (*strp++ != '.')
return NULL;
strp = getnum(strp, &rulep->r_week, 1, 5);
if (strp == NULL)
return NULL;
if (*strp++ != '.')
return NULL;
strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
} else if (is_digit(*strp)) {
/*
** Day of year.
*/
rulep->r_type = DAY_OF_YEAR;
strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
} else return NULL; /* invalid format */
if (strp == NULL)
return NULL;
if (*strp == '/') {
/*
** Time specified.
*/
++strp;
strp = getsecs(strp, &rulep->r_time);
} else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
return strp;
}
/*
Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
year, a rule, and the offset from UTC at the time that rule takes effect,
calculate the Epoch-relative time that rule takes effect.
*/
static time_t transtime(const time_t janfirst, const int year, register const struct rule * const rulep, const long offset)
{
register int leapyear;
register time_t value;
register int i;
int d, m1, yy0, yy1, yy2, dow;
INITIALIZE(value);
leapyear = isleap(year);
switch (rulep->r_type) {
case JULIAN_DAY:
/*
** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
** years.
** In non-leap years, or if the day number is 59 or less, just
** add SECSPERDAY times the day number-1 to the time of
** January 1, midnight, to get the day.
*/
value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
if (leapyear && rulep->r_day >= 60)
value += SECSPERDAY;
break;
case DAY_OF_YEAR:
/*
** n - day of year.
** Just add SECSPERDAY times the day number to the time of
** January 1, midnight, to get the day.
*/
value = janfirst + rulep->r_day * SECSPERDAY;
break;
case MONTH_NTH_DAY_OF_WEEK:
/*
** Mm.n.d - nth "dth day" of month m.
*/
value = janfirst;
for (i = 0; i < rulep->r_mon - 1; ++i)
value += mon_lengths[leapyear][i] * SECSPERDAY;
/*
** Use Zeller's Congruence to get day-of-week of first day of
** month.
*/
m1 = (rulep->r_mon + 9) % 12 + 1;
yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
yy1 = yy0 / 100;
yy2 = yy0 % 100;
dow = ((26 * m1 - 2) / 10 +
1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
if (dow < 0)
dow += DAYSPERWEEK;
/*
** "dow" is the day-of-week of the first day of the month. Get
** the day-of-month (zero-origin) of the first "dow" day of the
** month.
*/
d = rulep->r_day - dow;
if (d < 0)
d += DAYSPERWEEK;
for (i = 1; i < rulep->r_week; ++i) {
if (d + DAYSPERWEEK >=
mon_lengths[leapyear][rulep->r_mon - 1])
break;
d += DAYSPERWEEK;
}
/*
** "d" is the day-of-month (zero-origin) of the day we want.
*/
value += d * SECSPERDAY;
break;
}
/*
** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
** question. To get the Epoch-relative time of the specified local
** time on that day, add the transition time and the current offset
** from UTC.
*/
return value + rulep->r_time + offset;
}
/*
Given a POSIX section 8-style TZ string, fill in the rule tables as
appropriate.
*/
static int tzparse(const char *name, register struct state * const sp, const int lastditch)
{
const char * stdname;
const char * dstname;
size_t stdlen;
size_t dstlen;
long stdoffset;
long dstoffset;
register time_t * atp;
register unsigned char * typep;
register char * cp;
INITIALIZE(dstname);
stdname = name;
if (lastditch) {
stdlen = strlen(name); /* length of standard zone name */
name += stdlen;
if (stdlen >= sizeof sp->chars)
stdlen = (sizeof sp->chars) - 1;
stdoffset = 0;
} else {
name = getzname(name);
stdlen = name - stdname;
if (stdlen < 3)
return -1;
if (*name == '\0')
return -1;
name = getoffset(name, &stdoffset);
if (name == NULL)
return -1;
}
sp->leapcnt = 0; /* so, we're off a little */
if (*name != '\0') {
dstname = name;
name = getzname(name);
dstlen = name - dstname; /* length of DST zone name */
if (dstlen < 3)
return -1;
if (*name != '\0' && *name != ',' && *name != ';')
{
name = getoffset(name, &dstoffset);
if (name == NULL)
return -1;
}
else
dstoffset = stdoffset - SECSPERHOUR;
/* Go parsing the daylight saving stuff */
if (*name == ',' || *name == ';')
{
struct rule start;
struct rule end;
register int year;
register time_t janfirst;
time_t starttime;
time_t endtime;
++name;
if ((name = getrule(name, &start)) == NULL)
return -1;
if (*name++ != ',')
return -1;
if ((name = getrule(name, &end)) == NULL)
return -1;
if (*name != '\0')
return -1;
sp->typecnt = 2; /* standard time and DST */
/*
** Two transitions per year, from EPOCH_YEAR to 2037.
*/
sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
if (sp->timecnt > TZ_MAX_TIMES)
return -1;
sp->ttis[0].tt_gmtoff = -dstoffset;
sp->ttis[0].tt_isdst = 1;
sp->ttis[0].tt_abbrind = (int)(stdlen + 1);
sp->ttis[1].tt_gmtoff = -stdoffset;
sp->ttis[1].tt_isdst = 0;
sp->ttis[1].tt_abbrind = 0;
atp = sp->ats;
typep = sp->types;
janfirst = 0;
for (year = EPOCH_YEAR; year <= 2037; ++year) {
starttime = transtime(janfirst, year, &start,
stdoffset);
endtime = transtime(janfirst, year, &end,
dstoffset);
if (starttime > endtime) {
*atp++ = endtime;
*typep++ = 1; /* DST ends */
*atp++ = starttime;
*typep++ = 0; /* DST begins */
} else {
*atp++ = starttime;
*typep++ = 0; /* DST begins */
*atp++ = endtime;
*typep++ = 1; /* DST ends */
}
janfirst += year_lengths[isleap(year)] * SECSPERDAY;
}
} else {
register long theirstdoffset;
register long theirdstoffset;
register long theiroffset;
register int isdst;
register int i;
register int j;
if (*name != '\0')
return -1;
/*
Initial values of theirstdoffset and theirdstoffset.
*/
theirstdoffset = 0;
for (i = 0; i < sp->timecnt; ++i) {
j = sp->types[i];
if (!sp->ttis[j].tt_isdst) {
theirstdoffset =
-sp->ttis[j].tt_gmtoff;
break;
}
}
theirdstoffset = 0;
for (i = 0; i < sp->timecnt; ++i) {
j = sp->types[i];
if (sp->ttis[j].tt_isdst) {
theirdstoffset =
-sp->ttis[j].tt_gmtoff;
break;
}
}
/*
** Initially we're assumed to be in standard time.
*/
isdst = FALSE;
theiroffset = theirstdoffset;
/*
** Now juggle transition times and types
** tracking offsets as you do.
*/
for (i = 0; i < sp->timecnt; ++i) {
j = sp->types[i];
sp->types[i] = (unsigned char)sp->ttis[j].tt_isdst;
if (sp->ttis[j].tt_ttisgmt) {
/* No adjustment to transition time */
} else {
/*
** If summer time is in effect, and the
** transition time was not specified as
** standard time, add the summer time
** offset to the transition time;
** otherwise, add the standard time
** offset to the transition time.
*/
/*
** Transitions from DST to DDST
** will effectively disappear since
** POSIX provides for only one DST
** offset.
*/
if (isdst && !sp->ttis[j].tt_ttisstd) {
sp->ats[i] += dstoffset -
theirdstoffset;
} else {
sp->ats[i] += stdoffset -
theirstdoffset;
}
}
theiroffset = -sp->ttis[j].tt_gmtoff;
if (sp->ttis[j].tt_isdst)
theirdstoffset = theiroffset;
else theirstdoffset = theiroffset;
}
/*
** Finally, fill in ttis.
** ttisstd and ttisgmt need not be handled.
*/
sp->ttis[0].tt_gmtoff = -stdoffset;
sp->ttis[0].tt_isdst = FALSE;
sp->ttis[0].tt_abbrind = 0;
sp->ttis[1].tt_gmtoff = -dstoffset;
sp->ttis[1].tt_isdst = TRUE;
sp->ttis[1].tt_abbrind = (int)(stdlen + 1);
sp->typecnt = 2;
}
} else {
dstlen = 0;
sp->typecnt = 1; /* only standard time */
sp->timecnt = 0;
sp->ttis[0].tt_gmtoff = -stdoffset;
sp->ttis[0].tt_isdst = 0;
sp->ttis[0].tt_abbrind = 0;
}
sp->charcnt = (int)(stdlen + 1);
if (dstlen != 0)
sp->charcnt += (int)(dstlen + 1);
if ((size_t) sp->charcnt > sizeof sp->chars)
return -1;
cp = sp->chars;
(void) strncpy(cp, stdname, stdlen);
cp += stdlen;
*cp++ = '\0';
if (dstlen != 0) {
(void) strncpy(cp, dstname, dstlen);
*(cp + dstlen) = '\0';
}
return 0;
}
/* **************************************************************************
************************************************************************** */
#if (_MSC_VER >= 1400) // VC8+
#define switch_assert(expr) assert(expr);__analysis_assume( expr )
#else
#define switch_assert(expr) assert(expr)
#endif
static void timesub(const time_t * const timep, const long offset, register const struct state * const sp, register struct tm * const tmp)
{
register const struct lsinfo * lp;
register long days;
register time_t rem;
register int y;
register int yleap;
register const int * ip;
register long corr;
register int hit;
register int i;
switch_assert(timep != NULL);
switch_assert(sp != NULL);
switch_assert(tmp != NULL);
corr = 0;
hit = 0;
i = (sp == NULL) ? 0 : sp->leapcnt;
while (--i >= 0) {
lp = &sp->lsis[i];
if (*timep >= lp->ls_trans) {
if (*timep == lp->ls_trans) {
hit = ((i == 0 && lp->ls_corr > 0) ||
(i > 0 && lp->ls_corr > sp->lsis[i - 1].ls_corr));
if (hit)
while (i > 0 &&
sp->lsis[i].ls_trans ==
sp->lsis[i - 1].ls_trans + 1 &&
sp->lsis[i].ls_corr ==
sp->lsis[i - 1].ls_corr + 1) {
++hit;
--i;
}
}
corr = lp->ls_corr;
break;
}
}
days = (long)(*timep / SECSPERDAY);
rem = *timep % SECSPERDAY;
#ifdef mc68k
/* If this is for CPU bugs workarounds, i would remove this anyway. Who would use it on an old mc68k ? */
if (*timep == 0x80000000) {
/*
** A 3B1 muffs the division on the most negative number.
*/
days = -24855;
rem = -11648;
}
#endif
rem += (offset - corr);
while (rem < 0) {
rem += SECSPERDAY;
--days;
}
while (rem >= SECSPERDAY) {
rem -= SECSPERDAY;
++days;
}
tmp->tm_hour = (int) (rem / SECSPERHOUR);
rem = rem % SECSPERHOUR;
tmp->tm_min = (int) (rem / SECSPERMIN);
/*
** A positive leap second requires a special
** representation. This uses "... ??:59:60" et seq.
*/
tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
if (tmp->tm_wday < 0)
tmp->tm_wday += DAYSPERWEEK;
y = EPOCH_YEAR;
#define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
register int newy;
newy = (int)(y + days / DAYSPERNYEAR);
if (days < 0)
--newy;
days -= (newy - y) * DAYSPERNYEAR +
LEAPS_THRU_END_OF(newy - 1) -
LEAPS_THRU_END_OF(y - 1);
y = newy;
}
tmp->tm_year = y - TM_YEAR_BASE;
tmp->tm_yday = (int) days;
ip = mon_lengths[yleap];
for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
days = days - (long) ip[tmp->tm_mon];
tmp->tm_mday = (int) (days + 1);
tmp->tm_isdst = 0;
#if defined(HAVE_STRUCT_TM_TM_GMTOFF)
tmp->tm_gmtoff = offset;
#endif
}
/* **************************************************************************
************************************************************************** */
static void tztime(const time_t * const timep, const char *tzstring, struct tm * const tmp )
{
struct state *tzptr,
*sp;
const time_t t = *timep;
register int i;
register const struct ttinfo *ttisp;
if ( tzstring == NULL )
tzstring = gmt;
tzptr = (struct state *) malloc(sizeof (struct state));
sp = tzptr;
if (tzptr != NULL)
{
memset(tzptr, 0, sizeof(struct state));
(void) tzparse(tzstring, tzptr, FALSE);
if (sp->timecnt == 0 || t < sp->ats[0])
{
i = 0;
while (sp->ttis[i].tt_isdst)
if (++i >= sp->typecnt) {
i = 0;
break;
}
} else {
for (i = 1; i < sp->timecnt; ++i)
if (t < sp->ats[i])
break;
i = sp->types[i - 1]; // DST begin or DST end
}
ttisp = &sp->ttis[i];
/*
To get (wrong) behavior that's compatible with System V Release 2.0
you'd replace the statement below with
t += ttisp->tt_gmtoff;
timesub(&t, 0L, sp, tmp);
*/
if ( tmp != NULL ) /* Just a check not to assert */
{
timesub( &t, ttisp->tt_gmtoff, sp, tmp);
tmp->tm_isdst = ttisp->tt_isdst;
#if defined(HAVE_STRUCT_TM_TM_ZONE)
tmp->tm_zone = &sp->chars[ttisp->tt_abbrind];
#endif
}
free(tzptr);
}
}
/* For Emacs:
* Local Variables:
* mode:c
* indent-tabs-mode:t
* tab-width:4
* c-basic-offset:4
* End:
* For VIM:
* vim:set softtabstop=4 shiftwidth=4 tabstop=4:
*/