264 lines
7.5 KiB
C
264 lines
7.5 KiB
C
/*
|
|
* FreeSWITCH Modular Media Switching Software Library / Soft-Switch Application
|
|
* Copyright (C) 2005-2015, Anthony Minessale II <anthm@freeswitch.org>
|
|
*
|
|
* Version: MPL 1.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is FreeSWITCH Modular Media Switching Software Library / Soft-Switch Application
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* Anthony Minessale II <anthm@freeswitch.org>
|
|
* Portions created by the Initial Developer are Copyright (C)
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
*
|
|
* Dragos Oancea <droancea@yahoo.com>
|
|
*
|
|
* switch_estimators.c -- Estimators and Detectors (try to read into the future: packet loss, jitter, RTT, etc)
|
|
*
|
|
*/
|
|
|
|
#include <switch_estimators.h>
|
|
|
|
#include <switch.h>
|
|
#ifndef _MSC_VER
|
|
#include <switch_private.h>
|
|
#endif
|
|
#undef PACKAGE_NAME
|
|
#undef PACKAGE_STRING
|
|
#undef PACKAGE_TARNAME
|
|
#undef PACKAGE_VERSION
|
|
#undef PACKAGE_BUGREPORT
|
|
#undef VERSION
|
|
#undef PACKAGE
|
|
#undef inline
|
|
#include <datatypes.h>
|
|
#include <switch_types.h>
|
|
|
|
#define KALMAN_SYSTEM_MODELS 3 /*loss, jitter, rtt*/
|
|
#define EST_LOSS 0
|
|
#define EST_JITTER 1
|
|
#define EST_RTT 2
|
|
|
|
/* This function initializes the Kalman System Model
|
|
*
|
|
* xk+1 = A*xk + wk
|
|
* zk = H*xk + vk
|
|
* xk = state variable (must exist in physical world - measurable )
|
|
* zk = measurment
|
|
* wk,vk - white noise
|
|
* A = state trasition matrix , (n x n ) matrix
|
|
* H = state-to-measurment matrix , ( n x n ) matrix
|
|
* Noise covariance:
|
|
* Q: Covariance matrix of wk, ( n x n ) diagonal matrix
|
|
* R: Covariance matrix of vk , ( m x m ) diagonal matrix
|
|
* R: if you want to be affected less by the measurement and get the estimate with less variation, increase R
|
|
* Q: if you want to be affected more by the measurement and get the estimate with more variation, decrease Q
|
|
*
|
|
* (Phil Kim book)
|
|
*
|
|
*/
|
|
SWITCH_DECLARE(void) switch_kalman_init(kalman_estimator_t *est, float Q, float R)
|
|
{
|
|
est -> val_estimate_last = 0 ;
|
|
est -> P_last = 0;
|
|
est -> Q = Q; /*accuracy of system model */ /* SYSTEM MODEL: TO BE DEDUCTED */
|
|
est -> R = R; /*accuracy of measurement*/ /* SYSTEM MODEL: TO BE DEDUCTED */
|
|
est -> K = 0;
|
|
est -> val_estimate = 0 ;
|
|
est -> val_measured = 0 ; // [0-100 %] or [0-5000] or [0-2sec]
|
|
}
|
|
|
|
/*
|
|
CUSUM Kalman functions to detect sudden change over a predefined thereshold.
|
|
|
|
y(t) = sampled RTT
|
|
x(t)= desired RTT
|
|
|
|
Model:
|
|
x(t+1) = x(t) + delta(t)*v(t)
|
|
y(t) = x(t) + e(t)
|
|
|
|
Noisy characteristic of RTT captured by measurment noise e(t) with variance Re.
|
|
The step changes in the desired RTT x(t) is modeled as the process noise v(t)
|
|
with variance Rv and the discrete variable delta(t) .
|
|
If a change occurs at time t, then delta(t) = 1 otherwise delta(t) = 0.
|
|
|
|
avg(x(t)) = avg(x(t-1)) + K(t)(y(t) - avg(x(t-1)))
|
|
K(t) = P(t-1)/(P(t-1) + Re))
|
|
P(t) = (1-K(t))P(t-1) + delta(t-1)* Rv
|
|
e(t) = y(t) - avg(x(t))
|
|
g(t) = max(g(t-1) + e(t) - epsilon,0)
|
|
if g(t) > 0 then
|
|
delta(t) = 1 // alarm
|
|
g(t) = 0
|
|
else
|
|
delta(t) = 0
|
|
endif
|
|
|
|
constants:
|
|
|
|
epsilon = 0.005
|
|
h = 0.05
|
|
*/
|
|
SWITCH_DECLARE(switch_bool_t) switch_kalman_cusum_init(cusum_kalman_detector_t *detect_change, float epsilon,float h)
|
|
{
|
|
cusum_kalman_detector_t *detector_change = detect_change;
|
|
|
|
|
|
if (epsilon < 0 || h < 0) {
|
|
return FALSE;
|
|
}
|
|
|
|
detector_change -> val_estimate_last = 0;
|
|
detector_change -> val_desired_last = 0;
|
|
detector_change -> P_last = 0;
|
|
detector_change -> K_last = 0;
|
|
detector_change -> delta = 0;
|
|
detector_change -> measurement_noise_e = 0;
|
|
detector_change -> variance_Re = 0;
|
|
detector_change -> measurement_noise_v = 0;
|
|
detector_change -> variance_Rv = 0;
|
|
detector_change -> g_last = 0;
|
|
/*per system model*/
|
|
detector_change -> epsilon = epsilon;
|
|
detector_change -> h = h;
|
|
/*variance*/
|
|
detector_change -> last_average = 0;
|
|
detector_change -> last_q = 0;
|
|
detector_change -> N = 0;
|
|
return TRUE;
|
|
}
|
|
|
|
SWITCH_DECLARE (switch_bool_t) switch_kalman_cusum_detect_change(cusum_kalman_detector_t * detector, float measurement, float rtt_avg)
|
|
{
|
|
float K=0;
|
|
float P=0;
|
|
float g=0;
|
|
float desired_val;
|
|
float current_average;
|
|
float current_q;
|
|
float sample_variance_Re = 0;
|
|
|
|
/*variance*/
|
|
|
|
detector->N++;
|
|
current_average = detector->last_average + (measurement - detector->last_average)/detector->N ;
|
|
if (rtt_avg > current_average) {
|
|
current_average = rtt_avg;
|
|
}
|
|
current_q = detector-> last_q + (measurement - detector->last_average) * (measurement - current_average);
|
|
if (detector->N != 0)
|
|
sample_variance_Re = sqrt(current_q/detector->N);
|
|
|
|
detector->variance_Re = sample_variance_Re;
|
|
detector->variance_Rv = sample_variance_Re;
|
|
|
|
if (sample_variance_Re != 0) {
|
|
K = detector->P_last / (detector->P_last + detector->variance_Re);
|
|
desired_val = detector->val_desired_last + K * (measurement - detector->variance_Re);
|
|
P = (1 - K) * detector->P_last + detector->delta * detector->variance_Rv;
|
|
detector->measurement_noise_e = measurement - desired_val;
|
|
g = detector->g_last + detector->measurement_noise_e - detector->epsilon;
|
|
if (g > detector->h) {
|
|
detector->delta = 1;
|
|
g = 0;
|
|
} else {
|
|
detector->delta = 0;
|
|
}
|
|
|
|
/* update last vals for calculating variance */
|
|
detector->last_average = current_average;
|
|
/* update lasts (cusum)*/
|
|
detector -> g_last = g;
|
|
detector -> P_last = P;
|
|
detector -> val_desired_last = desired_val;
|
|
}
|
|
if (detector->delta == 1) {
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
/* Kalman filter abstract ( measure and estimate 1 single value per system model )
|
|
* Given the measurment and the system model together with the current state ,
|
|
* the function puts an estimate in the estimator struct */
|
|
SWITCH_DECLARE(switch_bool_t) switch_kalman_estimate(kalman_estimator_t * est, float measurement, int system_model)
|
|
{
|
|
/*system model can be about: loss, jitter, rtt*/
|
|
float val_estimate;
|
|
float val_temp_est = est->val_estimate_last;
|
|
float P_temp = est->P_last + est->Q;
|
|
|
|
if (system_model >= KALMAN_SYSTEM_MODELS) {
|
|
return SWITCH_FALSE ;
|
|
}
|
|
|
|
/*sanitize input a little bit, just in case */
|
|
if (system_model == EST_LOSS ) {
|
|
if ((measurement > 100) && (measurement < 0)) {
|
|
return SWITCH_FALSE ;
|
|
}
|
|
}
|
|
|
|
if (system_model == EST_JITTER) {
|
|
if ((measurement > 10000) && (measurement < 0)) {
|
|
return SWITCH_FALSE;
|
|
}
|
|
}
|
|
|
|
if (system_model == EST_RTT) {
|
|
if ((measurement > 2 ) && (measurement < 0)) {
|
|
return SWITCH_FALSE;
|
|
}
|
|
}
|
|
|
|
/* calculate the Kalman gain */
|
|
est->K = P_temp * (1.0/(P_temp + est->R));
|
|
/* real life measurement */
|
|
est->val_measured = measurement ;
|
|
val_estimate = val_temp_est + est->K * (est->val_measured - val_temp_est);
|
|
est->P = (1 - est->K) * P_temp;
|
|
/*update lasts*/
|
|
est->P_last = est->P;
|
|
/* save the estimated value (future) */
|
|
est->val_estimate_last = val_estimate;
|
|
return SWITCH_TRUE;
|
|
}
|
|
|
|
SWITCH_DECLARE(switch_bool_t) switch_kalman_is_slow_link(kalman_estimator_t * est_loss, kalman_estimator_t * est_rtt)
|
|
{
|
|
float thresh_packet_loss = 5; /* % */
|
|
float thresh_rtt = 0.8 ; /*seconds*/
|
|
|
|
if ((est_loss->val_estimate_last > thresh_packet_loss) &&
|
|
(est_rtt->val_estimate_last > thresh_rtt )) {
|
|
return SWITCH_TRUE;
|
|
}
|
|
|
|
return SWITCH_FALSE;
|
|
}
|
|
|
|
/* For Emacs:
|
|
* Local Variables:
|
|
* mode:c
|
|
* indent-tabs-mode:t
|
|
* tab-width:4
|
|
* c-basic-offset:4
|
|
* End:
|
|
* For VIM:
|
|
* vim:set softtabstop=4 shiftwidth=4 tabstop=4 noet:
|
|
*/
|
|
|