freeswitch/libs/spandsp/src/g722.c

632 lines
17 KiB
C

/*
* SpanDSP - a series of DSP components for telephony
*
* g722.c - The ITU G.722 codec.
*
* Written by Steve Underwood <steveu@coppice.org>
*
* Copyright (C) 2005 Steve Underwood
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 2.1,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Based in part on a single channel G.722 codec which is:
*
* Copyright (c) CMU 1993
* Computer Science, Speech Group
* Chengxiang Lu and Alex Hauptmann
*
* $Id: g722.c,v 1.10 2009/04/22 12:57:40 steveu Exp $
*/
/*! \file */
#if defined(HAVE_CONFIG_H)
#include "config.h"
#endif
#include <inttypes.h>
#include <memory.h>
#include <stdlib.h>
#if defined(HAVE_TGMATH_H)
#include <tgmath.h>
#endif
#if defined(HAVE_MATH_H)
#include <math.h>
#endif
#include "floating_fudge.h"
#include "spandsp/telephony.h"
#include "spandsp/fast_convert.h"
#include "spandsp/saturated.h"
#include "spandsp/vector_int.h"
#include "spandsp/g722.h"
#include "spandsp/private/g722.h"
static const int16_t qmf_coeffs_fwd[12] =
{
3, -11, 12, 32, -210, 951, 3876, -805, 362, -156, 53, -11,
};
static const int16_t qmf_coeffs_rev[12] =
{
-11, 53, -156, 362, -805, 3876, 951, -210, 32, 12, -11, 3
};
static const int16_t qm2[4] =
{
-7408, -1616, 7408, 1616
};
static const int16_t qm4[16] =
{
0, -20456, -12896, -8968,
-6288, -4240, -2584, -1200,
20456, 12896, 8968, 6288,
4240, 2584, 1200, 0
};
static const int16_t qm5[32] =
{
-280, -280, -23352, -17560,
-14120, -11664, -9752, -8184,
-6864, -5712, -4696, -3784,
-2960, -2208, -1520, -880,
23352, 17560, 14120, 11664,
9752, 8184, 6864, 5712,
4696, 3784, 2960, 2208,
1520, 880, 280, -280
};
static const int16_t qm6[64] =
{
-136, -136, -136, -136,
-24808, -21904, -19008, -16704,
-14984, -13512, -12280, -11192,
-10232, -9360, -8576, -7856,
-7192, -6576, -6000, -5456,
-4944, -4464, -4008, -3576,
-3168, -2776, -2400, -2032,
-1688, -1360, -1040, -728,
24808, 21904, 19008, 16704,
14984, 13512, 12280, 11192,
10232, 9360, 8576, 7856,
7192, 6576, 6000, 5456,
4944, 4464, 4008, 3576,
3168, 2776, 2400, 2032,
1688, 1360, 1040, 728,
432, 136, -432, -136
};
static const int16_t q6[32] =
{
0, 35, 72, 110,
150, 190, 233, 276,
323, 370, 422, 473,
530, 587, 650, 714,
786, 858, 940, 1023,
1121, 1219, 1339, 1458,
1612, 1765, 1980, 2195,
2557, 2919, 0, 0
};
static const int16_t ilb[32] =
{
2048, 2093, 2139, 2186,
2233, 2282, 2332, 2383,
2435, 2489, 2543, 2599,
2656, 2714, 2774, 2834,
2896, 2960, 3025, 3091,
3158, 3228, 3298, 3371,
3444, 3520, 3597, 3676,
3756, 3838, 3922, 4008
};
static const int16_t iln[32] =
{
0, 63, 62, 31, 30, 29, 28, 27,
26, 25, 24, 23, 22, 21, 20, 19,
18, 17, 16, 15, 14, 13, 12, 11,
10, 9, 8, 7, 6, 5, 4, 0
};
static const int16_t ilp[32] =
{
0, 61, 60, 59, 58, 57, 56, 55,
54, 53, 52, 51, 50, 49, 48, 47,
46, 45, 44, 43, 42, 41, 40, 39,
38, 37, 36, 35, 34, 33, 32, 0
};
static const int16_t ihn[3] =
{
0, 1, 0
};
static const int16_t ihp[3] =
{
0, 3, 2
};
static const int16_t wl[8] =
{
-60, -30, 58, 172, 334, 538, 1198, 3042
};
static const int16_t rl42[16] =
{
0, 7, 6, 5, 4, 3, 2, 1,
7, 6, 5, 4, 3, 2, 1, 0
};
static const int16_t wh[3] =
{
0, -214, 798
};
static const int16_t rh2[4] =
{
2, 1, 2, 1
};
static void block4(g722_band_t *s, int16_t dx)
{
int16_t wd1;
int16_t wd2;
int16_t wd3;
int16_t sp;
int16_t r;
int16_t p;
int16_t ap[2];
int32_t wd32;
int32_t sz;
int i;
/* RECONS */
r = saturated_add16(s->s, dx);
/* PARREC */
p = saturated_add16(s->sz, dx);
/* UPPOL2 */
wd1 = saturate((int32_t) s->a[0] << 2);
wd32 = ((p ^ s->p[0]) & 0x8000) ? wd1 : -wd1;
if (wd32 > 32767)
wd32 = 32767;
wd3 = (int16_t) ((((p ^ s->p[1]) & 0x8000) ? -128 : 128)
+ (wd32 >> 7)
+ (((int32_t) s->a[1]*(int32_t) 32512) >> 15));
if (abs(wd3) > 12288)
wd3 = (wd3 < 0) ? -12288 : 12288;
ap[1] = wd3;
/* UPPOL1 */
wd1 = ((p ^ s->p[0]) & 0x8000) ? -192 : 192;
wd2 = (int16_t) (((int32_t) s->a[0]*(int32_t) 32640) >> 15);
ap[0] = saturated_add16(wd1, wd2);
wd3 = saturated_sub16(15360, ap[1]);
if (abs(ap[0]) > wd3)
ap[0] = (ap[0] < 0) ? -wd3 : wd3;
/* FILTEP */
wd1 = saturated_add16(r, r);
wd1 = (int16_t) (((int32_t) ap[0]*(int32_t) wd1) >> 15);
wd2 = saturated_add16(s->r, s->r);
wd2 = (int16_t) (((int32_t) ap[1]*(int32_t) wd2) >> 15);
sp = saturated_add16(wd1, wd2);
s->r = r;
s->a[1] = ap[1];
s->a[0] = ap[0];
s->p[1] = s->p[0];
s->p[0] = p;
/* UPZERO */
/* DELAYA */
/* FILTEZ */
wd1 = (dx == 0) ? 0 : 128;
s->d[0] = dx;
sz = 0;
for (i = 5; i >= 0; i--)
{
wd2 = ((s->d[i + 1] ^ dx) & 0x8000) ? -wd1 : wd1;
wd3 = (int16_t) (((int32_t) s->b[i]*(int32_t) 32640) >> 15);
s->b[i] = saturated_add16(wd2, wd3);
wd3 = saturated_add16(s->d[i], s->d[i]);
sz += ((int32_t) s->b[i]*(int32_t) wd3) >> 15;
s->d[i + 1] = s->d[i];
}
s->sz = saturate(sz);
/* PREDIC */
s->s = saturated_add16(sp, s->sz);
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(g722_decode_state_t *) g722_decode_init(g722_decode_state_t *s, int rate, int options)
{
if (s == NULL)
{
if ((s = (g722_decode_state_t *) malloc(sizeof(*s))) == NULL)
return NULL;
}
memset(s, 0, sizeof(*s));
if (rate == 48000)
s->bits_per_sample = 6;
else if (rate == 56000)
s->bits_per_sample = 7;
else
s->bits_per_sample = 8;
if ((options & G722_SAMPLE_RATE_8000))
s->eight_k = TRUE;
if ((options & G722_PACKED) && s->bits_per_sample != 8)
s->packed = TRUE;
else
s->packed = FALSE;
s->band[0].det = 32;
s->band[1].det = 8;
return s;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) g722_decode_release(g722_decode_state_t *s)
{
return 0;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) g722_decode_free(g722_decode_state_t *s)
{
free(s);
return 0;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) g722_decode(g722_decode_state_t *s, int16_t amp[], const uint8_t g722_data[], int len)
{
int rlow;
int ihigh;
int16_t dlow;
int16_t dhigh;
int rhigh;
int wd1;
int wd2;
int wd3;
int code;
int outlen;
int j;
outlen = 0;
rhigh = 0;
for (j = 0; j < len; )
{
if (s->packed)
{
/* Unpack the code bits */
if (s->in_bits < s->bits_per_sample)
{
s->in_buffer |= (g722_data[j++] << s->in_bits);
s->in_bits += 8;
}
code = s->in_buffer & ((1 << s->bits_per_sample) - 1);
s->in_buffer >>= s->bits_per_sample;
s->in_bits -= s->bits_per_sample;
}
else
{
code = g722_data[j++];
}
switch (s->bits_per_sample)
{
default:
case 8:
wd1 = code & 0x3F;
ihigh = (code >> 6) & 0x03;
wd2 = qm6[wd1];
wd1 >>= 2;
break;
case 7:
wd1 = code & 0x1F;
ihigh = (code >> 5) & 0x03;
wd2 = qm5[wd1];
wd1 >>= 1;
break;
case 6:
wd1 = code & 0x0F;
ihigh = (code >> 4) & 0x03;
wd2 = qm4[wd1];
break;
}
/* Block 5L, LOW BAND INVQBL */
wd2 = ((int32_t) s->band[0].det*(int32_t) wd2) >> 15;
/* Block 5L, RECONS */
/* Block 6L, LIMIT */
rlow = saturate15(s->band[0].s + wd2);
/* Block 2L, INVQAL */
wd2 = qm4[wd1];
dlow = (int16_t) (((int32_t) s->band[0].det*(int32_t) wd2) >> 15);
/* Block 3L, LOGSCL */
wd2 = rl42[wd1];
wd1 = ((int32_t) s->band[0].nb*(int32_t) 127) >> 7;
wd1 += wl[wd2];
if (wd1 < 0)
wd1 = 0;
else if (wd1 > 18432)
wd1 = 18432;
s->band[0].nb = (int16_t) wd1;
/* Block 3L, SCALEL */
wd1 = (s->band[0].nb >> 6) & 31;
wd2 = 8 - (s->band[0].nb >> 11);
wd3 = (wd2 < 0) ? (ilb[wd1] << -wd2) : (ilb[wd1] >> wd2);
s->band[0].det = (int16_t) (wd3 << 2);
block4(&s->band[0], dlow);
if (!s->eight_k)
{
/* Block 2H, INVQAH */
wd2 = qm2[ihigh];
dhigh = (int16_t) (((int32_t) s->band[1].det*(int32_t) wd2) >> 15);
/* Block 5H, RECONS */
/* Block 6H, LIMIT */
rhigh = saturate15(dhigh + s->band[1].s);
/* Block 2H, INVQAH */
wd2 = rh2[ihigh];
wd1 = ((int32_t) s->band[1].nb*(int32_t) 127) >> 7;
wd1 += wh[wd2];
if (wd1 < 0)
wd1 = 0;
else if (wd1 > 22528)
wd1 = 22528;
s->band[1].nb = (int16_t) wd1;
/* Block 3H, SCALEH */
wd1 = (s->band[1].nb >> 6) & 31;
wd2 = 10 - (s->band[1].nb >> 11);
wd3 = (wd2 < 0) ? (ilb[wd1] << -wd2) : (ilb[wd1] >> wd2);
s->band[1].det = (int16_t) (wd3 << 2);
block4(&s->band[1], dhigh);
}
if (s->itu_test_mode)
{
amp[outlen++] = (int16_t) (rlow << 1);
amp[outlen++] = (int16_t) (rhigh << 1);
}
else
{
if (s->eight_k)
{
/* We shift by 1 to allow for the 15 bit input to the G.722 algorithm. */
amp[outlen++] = (int16_t) (rlow << 1);
}
else
{
/* Apply the QMF to build the final signal */
s->x[s->ptr] = (int16_t) (rlow + rhigh);
s->y[s->ptr] = (int16_t) (rlow - rhigh);
if (++s->ptr >= 12)
s->ptr = 0;
/* We shift by 12 to allow for the QMF filters (DC gain = 4096), less 1
to allow for the 15 bit input to the G.722 algorithm. */
amp[outlen++] = (int16_t) (vec_circular_dot_prodi16(s->y, qmf_coeffs_rev, 12, s->ptr) >> 11);
amp[outlen++] = (int16_t) (vec_circular_dot_prodi16(s->x, qmf_coeffs_fwd, 12, s->ptr) >> 11);
}
}
}
return outlen;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(g722_encode_state_t *) g722_encode_init(g722_encode_state_t *s, int rate, int options)
{
if (s == NULL)
{
if ((s = (g722_encode_state_t *) malloc(sizeof(*s))) == NULL)
return NULL;
}
memset(s, 0, sizeof(*s));
if (rate == 48000)
s->bits_per_sample = 6;
else if (rate == 56000)
s->bits_per_sample = 7;
else
s->bits_per_sample = 8;
if ((options & G722_SAMPLE_RATE_8000))
s->eight_k = TRUE;
if ((options & G722_PACKED) && s->bits_per_sample != 8)
s->packed = TRUE;
else
s->packed = FALSE;
s->band[0].det = 32;
s->band[1].det = 8;
return s;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) g722_encode_release(g722_encode_state_t *s)
{
return 0;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) g722_encode_free(g722_encode_state_t *s)
{
free(s);
return 0;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) g722_encode(g722_encode_state_t *s, uint8_t g722_data[], const int16_t amp[], int len)
{
int16_t dlow;
int16_t dhigh;
int el;
int wd;
int wd1;
int ril;
int wd2;
int il4;
int ih2;
int wd3;
int eh;
int g722_bytes;
int ihigh;
int ilow;
int code;
/* Low and high band PCM from the QMF */
int16_t xlow;
int16_t xhigh;
int32_t sumeven;
int32_t sumodd;
int mih;
int i;
int j;
g722_bytes = 0;
xhigh = 0;
for (j = 0; j < len; )
{
if (s->itu_test_mode)
{
xlow =
xhigh = amp[j++] >> 1;
}
else
{
if (s->eight_k)
{
/* We shift by 1 to allow for the 15 bit input to the G.722 algorithm. */
xlow = amp[j++] >> 1;
}
else
{
/* Apply the transmit QMF */
s->x[s->ptr] = amp[j++];
s->y[s->ptr] = amp[j++];
if (++s->ptr >= 12)
s->ptr = 0;
sumodd = vec_circular_dot_prodi16(s->x, qmf_coeffs_fwd, 12, s->ptr);
sumeven = vec_circular_dot_prodi16(s->y, qmf_coeffs_rev, 12, s->ptr);
/* We shift by 12 to allow for the QMF filters (DC gain = 4096), plus 1
to allow for us summing two filters, plus 1 to allow for the 15 bit
input to the G.722 algorithm. */
xlow = (int16_t) ((sumeven + sumodd) >> 14);
xhigh = (int16_t) ((sumeven - sumodd) >> 14);
}
}
/* Block 1L, SUBTRA */
el = saturated_sub16(xlow, s->band[0].s);
/* Block 1L, QUANTL */
wd = (el >= 0) ? el : ~el;
for (i = 1; i < 30; i++)
{
wd1 = ((int32_t) q6[i]*(int32_t) s->band[0].det) >> 12;
if (wd < wd1)
break;
}
ilow = (el < 0) ? iln[i] : ilp[i];
/* Block 2L, INVQAL */
ril = ilow >> 2;
wd2 = qm4[ril];
dlow = (int16_t) (((int32_t) s->band[0].det*(int32_t) wd2) >> 15);
/* Block 3L, LOGSCL */
il4 = rl42[ril];
wd = ((int32_t) s->band[0].nb*(int32_t) 127) >> 7;
s->band[0].nb = (int16_t) (wd + wl[il4]);
if (s->band[0].nb < 0)
s->band[0].nb = 0;
else if (s->band[0].nb > 18432)
s->band[0].nb = 18432;
/* Block 3L, SCALEL */
wd1 = (s->band[0].nb >> 6) & 31;
wd2 = 8 - (s->band[0].nb >> 11);
wd3 = (wd2 < 0) ? (ilb[wd1] << -wd2) : (ilb[wd1] >> wd2);
s->band[0].det = (int16_t) (wd3 << 2);
block4(&s->band[0], dlow);
if (s->eight_k)
{
/* Just leave the high bits as zero */
code = (0xC0 | ilow) >> (8 - s->bits_per_sample);
}
else
{
/* Block 1H, SUBTRA */
eh = saturated_sub16(xhigh, s->band[1].s);
/* Block 1H, QUANTH */
wd = (eh >= 0) ? eh : ~eh;
wd1 = (564*s->band[1].det) >> 12;
mih = (wd >= wd1) ? 2 : 1;
ihigh = (eh < 0) ? ihn[mih] : ihp[mih];
/* Block 2H, INVQAH */
wd2 = qm2[ihigh];
dhigh = (int16_t) (((int32_t) s->band[1].det*(int32_t) wd2) >> 15);
/* Block 3H, LOGSCH */
ih2 = rh2[ihigh];
wd = ((int32_t) s->band[1].nb*(int32_t) 127) >> 7;
s->band[1].nb = (int16_t) (wd + wh[ih2]);
if (s->band[1].nb < 0)
s->band[1].nb = 0;
else if (s->band[1].nb > 22528)
s->band[1].nb = 22528;
/* Block 3H, SCALEH */
wd1 = (s->band[1].nb >> 6) & 31;
wd2 = 10 - (s->band[1].nb >> 11);
wd3 = (wd2 < 0) ? (ilb[wd1] << -wd2) : (ilb[wd1] >> wd2);
s->band[1].det = (int16_t) (wd3 << 2);
block4(&s->band[1], dhigh);
code = ((ihigh << 6) | ilow) >> (8 - s->bits_per_sample);
}
if (s->packed)
{
/* Pack the code bits */
s->out_buffer |= (code << s->out_bits);
s->out_bits += s->bits_per_sample;
if (s->out_bits >= 8)
{
g722_data[g722_bytes++] = (uint8_t) (s->out_buffer & 0xFF);
s->out_bits -= 8;
s->out_buffer >>= 8;
}
}
else
{
g722_data[g722_bytes++] = (uint8_t) code;
}
}
return g722_bytes;
}
/*- End of function --------------------------------------------------------*/
/*- End of file ------------------------------------------------------------*/