521 lines
19 KiB
C
521 lines
19 KiB
C
/*
|
|
* g722_1 - a library for the G.722.1 and Annex C codecs
|
|
*
|
|
* encoder.c
|
|
*
|
|
* Adapted by Steve Underwood <steveu@coppice.org> from the reference
|
|
* code supplied with ITU G.722.1, which is:
|
|
*
|
|
* © 2004 Polycom, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
*
|
|
* $Id: encoderf.c,v 1.22 2008/11/21 15:30:22 steveu Exp $
|
|
*/
|
|
|
|
/*! \file */
|
|
|
|
#if defined(HAVE_CONFIG_H)
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <inttypes.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include "g722_1/g722_1.h"
|
|
|
|
#include "defs.h"
|
|
#include "huff_tab.h"
|
|
#include "tables.h"
|
|
#include "bitstream.h"
|
|
|
|
#if !defined(G722_1_USE_FIXED_POINT)
|
|
|
|
static int compute_region_powers(int number_of_regions,
|
|
float mlt_coefs[MAX_DCT_LENGTH],
|
|
int drp_num_bits[MAX_NUMBER_OF_REGIONS],
|
|
int drp_code_bits[MAX_NUMBER_OF_REGIONS],
|
|
int absolute_region_power_index[MAX_NUMBER_OF_REGIONS]);
|
|
|
|
static int vector_huffman(int category,
|
|
int power_index,
|
|
float *raw_mlt_ptr,
|
|
int32_t *word_ptr);
|
|
|
|
static void vector_quantize_mlts(int number_of_regions,
|
|
int num_categorization_control_possibilities,
|
|
int number_of_available_bits,
|
|
float mlt_coefs[MAX_DCT_LENGTH],
|
|
int absolute_region_power_index[MAX_NUMBER_OF_REGIONS],
|
|
int power_categories[MAX_NUMBER_OF_REGIONS],
|
|
int category_balances[MAX_NUM_CATEGORIZATION_CONTROL_POSSIBILITIES - 1],
|
|
int *p_rate_control,
|
|
int region_mlt_bit_counts[MAX_NUMBER_OF_REGIONS],
|
|
int32_t region_mlt_bits[4*MAX_NUMBER_OF_REGIONS]);
|
|
|
|
static void encoder(g722_1_encode_state_t *s,
|
|
int number_of_available_bits,
|
|
int number_of_regions,
|
|
float mlt_coefs[MAX_DCT_LENGTH],
|
|
uint8_t g722_1_data[MAX_BITS_PER_FRAME/8]);
|
|
|
|
/* Stuff the bits into words for output */
|
|
static void bits_to_words(g722_1_encode_state_t *s,
|
|
int32_t *region_mlt_bits,
|
|
int *region_mlt_bit_counts,
|
|
int *drp_num_bits,
|
|
int *drp_code_bits,
|
|
uint8_t *out_code,
|
|
int categorization_control,
|
|
int number_of_regions,
|
|
int num_categorization_control_bits,
|
|
int number_of_bits_per_frame)
|
|
{
|
|
int region;
|
|
int region_bit_count;
|
|
int32_t *in_word_ptr;
|
|
uint32_t current_code;
|
|
int current_bits;
|
|
int bit_count;
|
|
|
|
/* First set up the categorization control bits to look like one more set of region power bits. */
|
|
drp_num_bits[number_of_regions] = num_categorization_control_bits;
|
|
drp_code_bits[number_of_regions] = categorization_control;
|
|
|
|
bit_count = 0;
|
|
/* These code bits are right justified. */
|
|
for (region = 0; region <= number_of_regions; region++)
|
|
{
|
|
g722_1_bitstream_put(&s->bitstream, &out_code, drp_code_bits[region], drp_num_bits[region]);
|
|
bit_count += drp_num_bits[region];
|
|
}
|
|
|
|
/* These code bits are left justified. */
|
|
for (region = 0; (region < number_of_regions) && (bit_count < number_of_bits_per_frame); region++)
|
|
{
|
|
in_word_ptr = ®ion_mlt_bits[4*region];
|
|
region_bit_count = region_mlt_bit_counts[region];
|
|
while ((region_bit_count > 0) && (bit_count < number_of_bits_per_frame))
|
|
{
|
|
current_bits = MIN(32, region_bit_count);
|
|
current_code = *in_word_ptr++;
|
|
current_code >>= (32 - current_bits);
|
|
g722_1_bitstream_put(&s->bitstream, &out_code, current_code, current_bits);
|
|
bit_count += current_bits;
|
|
region_bit_count -= current_bits;
|
|
}
|
|
}
|
|
|
|
/* Fill out with 1's. */
|
|
while (bit_count < number_of_bits_per_frame)
|
|
{
|
|
current_bits = MIN(32, number_of_bits_per_frame - bit_count);
|
|
g722_1_bitstream_put(&s->bitstream, &out_code, 0xFFFFFFFF, current_bits);
|
|
bit_count += current_bits;
|
|
}
|
|
g722_1_bitstream_flush(&s->bitstream, &out_code);
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
/* Encode the MLT coefs into out_words using G.722.1 Annex C */
|
|
static void encoder(g722_1_encode_state_t *s,
|
|
int number_of_available_bits,
|
|
int number_of_regions,
|
|
float mlt_coefs[MAX_DCT_LENGTH],
|
|
uint8_t g722_1_data[MAX_BITS_PER_FRAME/8])
|
|
{
|
|
int num_categorization_control_bits;
|
|
int num_categorization_control_possibilities;
|
|
int number_of_bits_per_frame;
|
|
int number_of_envelope_bits;
|
|
int rate_control;
|
|
int region;
|
|
int absolute_region_power_index[MAX_NUMBER_OF_REGIONS];
|
|
int power_categories[MAX_NUMBER_OF_REGIONS];
|
|
int category_balances[MAX_NUM_CATEGORIZATION_CONTROL_POSSIBILITIES - 1];
|
|
int drp_num_bits[MAX_NUMBER_OF_REGIONS + 1];
|
|
int drp_code_bits[MAX_NUMBER_OF_REGIONS + 1];
|
|
int region_mlt_bit_counts[MAX_NUMBER_OF_REGIONS];
|
|
int32_t region_mlt_bits[4*MAX_NUMBER_OF_REGIONS];
|
|
|
|
/* Initialize variables. */
|
|
if (number_of_regions == NUMBER_OF_REGIONS)
|
|
{
|
|
num_categorization_control_bits = NUM_CATEGORIZATION_CONTROL_BITS;
|
|
num_categorization_control_possibilities = NUM_CATEGORIZATION_CONTROL_POSSIBILITIES;
|
|
}
|
|
else
|
|
{
|
|
num_categorization_control_bits = MAX_NUM_CATEGORIZATION_CONTROL_BITS;
|
|
num_categorization_control_possibilities = MAX_NUM_CATEGORIZATION_CONTROL_POSSIBILITIES;
|
|
}
|
|
|
|
number_of_bits_per_frame = number_of_available_bits;
|
|
|
|
/* Estimate power envelope. */
|
|
number_of_envelope_bits = compute_region_powers(number_of_regions,
|
|
mlt_coefs,
|
|
drp_num_bits,
|
|
drp_code_bits,
|
|
absolute_region_power_index);
|
|
|
|
number_of_available_bits -= number_of_envelope_bits;
|
|
number_of_available_bits -= num_categorization_control_bits;
|
|
|
|
categorize(number_of_regions,
|
|
number_of_available_bits,
|
|
absolute_region_power_index,
|
|
power_categories,
|
|
category_balances);
|
|
|
|
/* Adjust absolute_region_category_index[] for mag_shift.
|
|
This assumes that REGION_POWER_STEPSIZE_DB is defined
|
|
to be exactly 3.010299957 or 20.0 times log base 10
|
|
of square root of 2. */
|
|
for (region = 0; region < number_of_regions; region++)
|
|
{
|
|
absolute_region_power_index[region] += REGION_POWER_TABLE_NUM_NEGATIVES;
|
|
region_mlt_bit_counts[region] = 0;
|
|
}
|
|
|
|
vector_quantize_mlts(number_of_regions,
|
|
num_categorization_control_possibilities,
|
|
number_of_available_bits,
|
|
mlt_coefs,
|
|
absolute_region_power_index,
|
|
power_categories,
|
|
category_balances,
|
|
&rate_control,
|
|
region_mlt_bit_counts,
|
|
region_mlt_bits);
|
|
|
|
/* Stuff bits into words */
|
|
bits_to_words(s,
|
|
region_mlt_bits,
|
|
region_mlt_bit_counts,
|
|
drp_num_bits,
|
|
drp_code_bits,
|
|
g722_1_data,
|
|
rate_control,
|
|
number_of_regions,
|
|
num_categorization_control_bits,
|
|
number_of_bits_per_frame);
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
/* Compute the power for each of the regions */
|
|
static int compute_region_powers(int number_of_regions,
|
|
float mlt_coefs[MAX_DCT_LENGTH],
|
|
int drp_num_bits[MAX_NUMBER_OF_REGIONS],
|
|
int drp_code_bits[MAX_NUMBER_OF_REGIONS],
|
|
int absolute_region_power_index[MAX_NUMBER_OF_REGIONS])
|
|
{
|
|
float *input_ptr;
|
|
int iterations;
|
|
float ftemp0;
|
|
float ftemp1;
|
|
int index;
|
|
int index_min;
|
|
int index_max;
|
|
int region;
|
|
int j;
|
|
int differential_region_power_index[MAX_NUMBER_OF_REGIONS];
|
|
int number_of_bits;
|
|
|
|
input_ptr = mlt_coefs;
|
|
for (region = 0; region < number_of_regions; region++)
|
|
{
|
|
ftemp0 = 0.0f;
|
|
for (j = 0; j < REGION_SIZE; j++)
|
|
{
|
|
ftemp1 = *input_ptr++;
|
|
ftemp0 += ftemp1*ftemp1;
|
|
}
|
|
ftemp0 *= REGION_SIZE_INVERSE;
|
|
|
|
index_min = 0;
|
|
index_max = REGION_POWER_TABLE_SIZE;
|
|
for (iterations = 0; iterations < 6; iterations++)
|
|
{
|
|
index = (index_min + index_max) >> 1;
|
|
if (ftemp0 < region_power_table_boundary[index - 1])
|
|
index_max = index;
|
|
else
|
|
index_min = index;
|
|
}
|
|
absolute_region_power_index[region] = index_min - REGION_POWER_TABLE_NUM_NEGATIVES;
|
|
}
|
|
|
|
/* Before we differentially encode the quantized region powers, adjust upward the
|
|
valleys to make sure all the peaks can be accurately represented. */
|
|
for (region = number_of_regions - 2; region >= 0; region--)
|
|
{
|
|
if (absolute_region_power_index[region] < absolute_region_power_index[region+1] - DRP_DIFF_MAX)
|
|
absolute_region_power_index[region] = absolute_region_power_index[region+1] - DRP_DIFF_MAX;
|
|
}
|
|
|
|
/* The MLT is currently scaled too low by the factor
|
|
ENCODER_SCALE_FACTOR(=18318)/32768 * (1./sqrt(160).
|
|
This is the ninth power of 1 over the square root of 2.
|
|
So later we will add ESF_ADJUSTMENT_TO_RMS_INDEX (now 9)
|
|
to drp_code_bits[0]. */
|
|
|
|
/* drp_code_bits[0] can range from 1 to 31. 0 will be used only as an escape sequence. */
|
|
if (absolute_region_power_index[0] < 1 - ESF_ADJUSTMENT_TO_RMS_INDEX)
|
|
absolute_region_power_index[0] = 1 - ESF_ADJUSTMENT_TO_RMS_INDEX;
|
|
if (absolute_region_power_index[0] > 31 - ESF_ADJUSTMENT_TO_RMS_INDEX)
|
|
absolute_region_power_index[0] = 31 - ESF_ADJUSTMENT_TO_RMS_INDEX;
|
|
|
|
differential_region_power_index[0] = absolute_region_power_index[0];
|
|
number_of_bits = 5;
|
|
drp_num_bits[0] = 5;
|
|
drp_code_bits[0] = absolute_region_power_index[0] + ESF_ADJUSTMENT_TO_RMS_INDEX;
|
|
|
|
/* Lower limit the absolute region power indices to -8 and upper limit them to 31. Such extremes
|
|
may be mathematically impossible anyway.*/
|
|
for (region = 1; region < number_of_regions; region++)
|
|
{
|
|
if (absolute_region_power_index[region] < -8 - ESF_ADJUSTMENT_TO_RMS_INDEX)
|
|
absolute_region_power_index[region] = -8 - ESF_ADJUSTMENT_TO_RMS_INDEX;
|
|
if (absolute_region_power_index[region] > 31 - ESF_ADJUSTMENT_TO_RMS_INDEX)
|
|
absolute_region_power_index[region] = 31 - ESF_ADJUSTMENT_TO_RMS_INDEX;
|
|
}
|
|
|
|
for (region = 1; region < number_of_regions; region++)
|
|
{
|
|
j = absolute_region_power_index[region] - absolute_region_power_index[region - 1];
|
|
if (j < DRP_DIFF_MIN)
|
|
j = DRP_DIFF_MIN;
|
|
j -= DRP_DIFF_MIN;
|
|
differential_region_power_index[region] = j;
|
|
absolute_region_power_index[region] = absolute_region_power_index[region - 1]
|
|
+ differential_region_power_index[region]
|
|
+ DRP_DIFF_MIN;
|
|
|
|
number_of_bits += differential_region_power_bits[region][j];
|
|
drp_num_bits[region] = differential_region_power_bits[region][j];
|
|
drp_code_bits[region] = differential_region_power_codes[region][j];
|
|
}
|
|
|
|
return number_of_bits;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
/* Scalar quantized vector Huffman coding (SQVH) */
|
|
static void vector_quantize_mlts(int number_of_regions,
|
|
int num_categorization_control_possibilities,
|
|
int number_of_available_bits,
|
|
float mlt_coefs[MAX_DCT_LENGTH],
|
|
int absolute_region_power_index[MAX_NUMBER_OF_REGIONS],
|
|
int power_categories[MAX_NUMBER_OF_REGIONS],
|
|
int category_balances[MAX_NUM_CATEGORIZATION_CONTROL_POSSIBILITIES - 1],
|
|
int *p_rate_control,
|
|
int region_mlt_bit_counts[MAX_NUMBER_OF_REGIONS],
|
|
int32_t region_mlt_bits[4*MAX_NUMBER_OF_REGIONS])
|
|
{
|
|
float *raw_mlt_ptr;
|
|
int region;
|
|
int category;
|
|
int total_mlt_bits;
|
|
|
|
total_mlt_bits = 0;
|
|
|
|
/* Start in the middle of the rate control range. */
|
|
for (*p_rate_control = 0; *p_rate_control < ((num_categorization_control_possibilities >> 1) - 1); (*p_rate_control)++)
|
|
{
|
|
region = category_balances[*p_rate_control];
|
|
power_categories[region]++;
|
|
}
|
|
|
|
for (region = 0; region < number_of_regions; region++)
|
|
{
|
|
category = power_categories[region];
|
|
raw_mlt_ptr = &mlt_coefs[region*REGION_SIZE];
|
|
if (category < NUM_CATEGORIES - 1)
|
|
{
|
|
region_mlt_bit_counts[region] = vector_huffman(category,
|
|
absolute_region_power_index[region],
|
|
raw_mlt_ptr,
|
|
®ion_mlt_bits[4*region]);
|
|
}
|
|
else
|
|
{
|
|
region_mlt_bit_counts[region] = 0;
|
|
}
|
|
total_mlt_bits += region_mlt_bit_counts[region];
|
|
}
|
|
|
|
/* If too few bits... */
|
|
while ((total_mlt_bits < number_of_available_bits) && (*p_rate_control > 0))
|
|
{
|
|
(*p_rate_control)--;
|
|
region = category_balances[*p_rate_control];
|
|
power_categories[region]--;
|
|
total_mlt_bits -= region_mlt_bit_counts[region];
|
|
|
|
category = power_categories[region];
|
|
raw_mlt_ptr = &mlt_coefs[region*REGION_SIZE];
|
|
if (category < NUM_CATEGORIES - 1)
|
|
{
|
|
region_mlt_bit_counts[region] = vector_huffman(category,
|
|
absolute_region_power_index[region],
|
|
raw_mlt_ptr,
|
|
®ion_mlt_bits[4*region]);
|
|
}
|
|
else
|
|
{
|
|
region_mlt_bit_counts[region] = 0;
|
|
}
|
|
total_mlt_bits += region_mlt_bit_counts[region];
|
|
}
|
|
|
|
/* If too many bits... */
|
|
while ((total_mlt_bits > number_of_available_bits) && (*p_rate_control < num_categorization_control_possibilities - 1))
|
|
{
|
|
region = category_balances[*p_rate_control];
|
|
power_categories[region]++;
|
|
total_mlt_bits -= region_mlt_bit_counts[region];
|
|
|
|
category = power_categories[region];
|
|
raw_mlt_ptr = &mlt_coefs[region*REGION_SIZE];
|
|
if (category < NUM_CATEGORIES - 1)
|
|
{
|
|
region_mlt_bit_counts[region] = vector_huffman(category,
|
|
absolute_region_power_index[region],
|
|
raw_mlt_ptr,
|
|
®ion_mlt_bits[4*region]);
|
|
}
|
|
else
|
|
{
|
|
region_mlt_bit_counts[region] = 0;
|
|
}
|
|
total_mlt_bits += region_mlt_bit_counts[region];
|
|
(*p_rate_control)++;
|
|
}
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
/* Huffman encoding for each region based on category and power_index */
|
|
static int vector_huffman(int category,
|
|
int power_index,
|
|
float *raw_mlt_ptr,
|
|
int32_t *word_ptr)
|
|
{
|
|
float inv_of_step_size_times_std_dev;
|
|
int j;
|
|
int n;
|
|
int k;
|
|
int number_of_region_bits;
|
|
int number_of_non_zero;
|
|
int vec_dim;
|
|
int num_vecs;
|
|
int kmax;
|
|
int kmax_plus_one;
|
|
int index;
|
|
int signs_index;
|
|
const int16_t *bitcount_table_ptr;
|
|
const uint16_t *code_table_ptr;
|
|
int code_bits;
|
|
int number_of_code_bits;
|
|
int current_word;
|
|
int current_word_bits_free;
|
|
|
|
vec_dim = vector_dimension[category];
|
|
num_vecs = number_of_vectors[category];
|
|
kmax = max_bin[category];
|
|
kmax_plus_one = kmax + 1;
|
|
|
|
current_word = 0;
|
|
current_word_bits_free = 32;
|
|
|
|
number_of_region_bits = 0;
|
|
|
|
bitcount_table_ptr = table_of_bitcount_tables[category];
|
|
code_table_ptr = table_of_code_tables[category];
|
|
|
|
inv_of_step_size_times_std_dev = step_size_inverse_table[category]
|
|
* standard_deviation_inverse_table[power_index];
|
|
|
|
for (n = 0; n < num_vecs; n++)
|
|
{
|
|
index = 0;
|
|
signs_index = 0;
|
|
number_of_non_zero = 0;
|
|
for (j = 0; j < vec_dim; j++)
|
|
{
|
|
k = (int) (fabs(*raw_mlt_ptr) * inv_of_step_size_times_std_dev + dead_zone[category]);
|
|
if (k != 0)
|
|
{
|
|
number_of_non_zero++;
|
|
signs_index <<= 1;
|
|
if (*raw_mlt_ptr > 0)
|
|
signs_index++;
|
|
if (k > kmax)
|
|
k = kmax;
|
|
}
|
|
index = index*(kmax_plus_one) + k;
|
|
raw_mlt_ptr++;
|
|
}
|
|
|
|
code_bits = *(code_table_ptr + index);
|
|
number_of_code_bits = *(bitcount_table_ptr + index) + number_of_non_zero;
|
|
number_of_region_bits += number_of_code_bits;
|
|
|
|
code_bits = (code_bits << number_of_non_zero) + signs_index;
|
|
|
|
/* MSB of codebits is transmitted first. */
|
|
j = current_word_bits_free - number_of_code_bits;
|
|
if (j >= 0)
|
|
{
|
|
current_word += code_bits << j;
|
|
current_word_bits_free = j;
|
|
}
|
|
else
|
|
{
|
|
j = -j;
|
|
current_word += code_bits >> j;
|
|
*word_ptr++ = current_word;
|
|
current_word_bits_free = 32 - j;
|
|
current_word = code_bits << current_word_bits_free;
|
|
}
|
|
}
|
|
|
|
*word_ptr++ = current_word;
|
|
|
|
return number_of_region_bits;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
int g722_1_encode(g722_1_encode_state_t *s, uint8_t g722_1_data[], const int16_t amp[], int len)
|
|
{
|
|
float mlt_coefs[MAX_FRAME_SIZE];
|
|
float famp[MAX_FRAME_SIZE];
|
|
int i;
|
|
int j;
|
|
int k;
|
|
|
|
for (i = 0, j = 0; i < len; i += s->frame_size, j += s->bytes_per_frame)
|
|
{
|
|
for (k = 0; k < s->frame_size; k++)
|
|
famp[k] = amp[k + i];
|
|
samples_to_rmlt_coefs(famp, s->history, mlt_coefs, s->frame_size);
|
|
/* This is for fixed point interop */
|
|
for (k = 0; k < s->frame_size; k++)
|
|
mlt_coefs[k] *= s->scale_factor;
|
|
encoder(s,
|
|
s->number_of_bits_per_frame,
|
|
s->number_of_regions,
|
|
mlt_coefs,
|
|
&g722_1_data[j]);
|
|
}
|
|
return j;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
#endif
|
|
/*- End of file ------------------------------------------------------------*/
|