2017-02-09 23:59:49 -05:00

616 lines
17 KiB
C++

/*****************************************************************************
* *
* DIGITAL SIGNAL PROCESSING TOOLS *
* Version 1.03, 2001/06/15 *
* (c) 1999 - Laurent de Soras *
* *
* FFTReal.cpp *
* Fourier transformation of real number arrays. *
* Portable ISO C++ *
* *
* Tab = 3 *
*****************************************************************************/
/*\\\ INCLUDE FILES \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/
#include "FFTReal.h"
#include <cassert>
#include <cmath>
#if defined (_MSC_VER)
#pragma pack (push, 8)
#endif // _MSC_VER
/*\\\ PUBLIC MEMBER FUNCTIONS \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/
/*==========================================================================*/
/* Name: Constructor */
/* Input parameters: */
/* - length: length of the array on which we want to do a FFT. */
/* Range: power of 2 only, > 0. */
/* Throws: std::bad_alloc, anything */
/*==========================================================================*/
FFTReal::FFTReal (const long length)
: _length (length)
, _nbr_bits (int (floor (log (length) / log (2) + 0.5)))
, _bit_rev_lut (int (floor (log (length) / log (2) + 0.5)))
, _trigo_lut (int (floor (log (length) / log (2) + 0.5)))
, _sqrt2_2 (flt_t (sqrt (2) * 0.5))
{
assert ((1L << _nbr_bits) == length);
_buffer_ptr = 0;
if (_nbr_bits > 2)
{
_buffer_ptr = new flt_t [_length];
}
}
/*==========================================================================*/
/* Name: Destructor */
/*==========================================================================*/
FFTReal::~FFTReal (void)
{
delete [] _buffer_ptr;
_buffer_ptr = 0;
}
/*==========================================================================*/
/* Name: do_fft */
/* Description: Compute the FFT of the array. */
/* Input parameters: */
/* - x: pointer on the source array (time). */
/* Output parameters: */
/* - f: pointer on the destination array (frequencies). */
/* f [0...length(x)/2] = real values, */
/* f [length(x)/2+1...length(x)-1] = imaginary values of */
/* coefficents 1...length(x)/2-1. */
/* Throws: Nothing */
/*==========================================================================*/
void FFTReal::do_fft (flt_t f [], const flt_t x []) const
{
/*______________________________________________
*
* General case
*______________________________________________
*/
if (_nbr_bits > 2)
{
flt_t * sf;
flt_t * df;
if (_nbr_bits & 1)
{
df = _buffer_ptr;
sf = f;
}
else
{
df = f;
sf = _buffer_ptr;
}
/* Do the transformation in several pass */
{
int pass;
long nbr_coef;
long h_nbr_coef;
long d_nbr_coef;
long coef_index;
/* First and second pass at once */
{
const long * const bit_rev_lut_ptr = _bit_rev_lut.get_ptr ();
coef_index = 0;
do
{
const long rev_index_0 = bit_rev_lut_ptr [coef_index];
const long rev_index_1 = bit_rev_lut_ptr [coef_index + 1];
const long rev_index_2 = bit_rev_lut_ptr [coef_index + 2];
const long rev_index_3 = bit_rev_lut_ptr [coef_index + 3];
flt_t * const df2 = df + coef_index;
df2 [1] = x [rev_index_0] - x [rev_index_1];
df2 [3] = x [rev_index_2] - x [rev_index_3];
const flt_t sf_0 = x [rev_index_0] + x [rev_index_1];
const flt_t sf_2 = x [rev_index_2] + x [rev_index_3];
df2 [0] = sf_0 + sf_2;
df2 [2] = sf_0 - sf_2;
coef_index += 4;
}
while (coef_index < _length);
}
/* Third pass */
{
coef_index = 0;
const flt_t sqrt2_2 = _sqrt2_2;
do
{
flt_t v;
sf [coef_index] = df [coef_index] + df [coef_index + 4];
sf [coef_index + 4] = df [coef_index] - df [coef_index + 4];
sf [coef_index + 2] = df [coef_index + 2];
sf [coef_index + 6] = df [coef_index + 6];
v = (df [coef_index + 5] - df [coef_index + 7]) * sqrt2_2;
sf [coef_index + 1] = df [coef_index + 1] + v;
sf [coef_index + 3] = df [coef_index + 1] - v;
v = (df [coef_index + 5] + df [coef_index + 7]) * sqrt2_2;
sf [coef_index + 5] = v + df [coef_index + 3];
sf [coef_index + 7] = v - df [coef_index + 3];
coef_index += 8;
}
while (coef_index < _length);
}
/* Next pass */
for (pass = 3; pass < _nbr_bits; ++pass)
{
coef_index = 0;
nbr_coef = 1 << pass;
h_nbr_coef = nbr_coef >> 1;
d_nbr_coef = nbr_coef << 1;
const flt_t * const cos_ptr = _trigo_lut.get_ptr (pass);
do
{
long i;
const flt_t * const sf1r = sf + coef_index;
const flt_t * const sf2r = sf1r + nbr_coef;
flt_t * const dfr = df + coef_index;
flt_t * const dfi = dfr + nbr_coef;
/* Extreme coefficients are always real */
dfr [0] = sf1r [0] + sf2r [0];
dfi [0] = sf1r [0] - sf2r [0]; // dfr [nbr_coef] =
dfr [h_nbr_coef] = sf1r [h_nbr_coef];
dfi [h_nbr_coef] = sf2r [h_nbr_coef];
/* Others are conjugate complex numbers */
const flt_t * const sf1i = sf1r + h_nbr_coef;
const flt_t * const sf2i = sf1i + nbr_coef;
for (i = 1; i < h_nbr_coef; ++ i)
{
const flt_t c = cos_ptr [i]; // cos (i*PI/nbr_coef);
const flt_t s = cos_ptr [h_nbr_coef - i]; // sin (i*PI/nbr_coef);
flt_t v;
v = sf2r [i] * c - sf2i [i] * s;
dfr [i] = sf1r [i] + v;
dfi [-i] = sf1r [i] - v; // dfr [nbr_coef - i] =
v = sf2r [i] * s + sf2i [i] * c;
dfi [i] = v + sf1i [i];
dfi [nbr_coef - i] = v - sf1i [i];
}
coef_index += d_nbr_coef;
}
while (coef_index < _length);
/* Prepare to the next pass */
{
flt_t * const temp_ptr = df;
df = sf;
sf = temp_ptr;
}
}
}
}
/*______________________________________________
*
* Special cases
*______________________________________________
*/
/* 4-point FFT */
else if (_nbr_bits == 2)
{
f [1] = x [0] - x [2];
f [3] = x [1] - x [3];
const flt_t b_0 = x [0] + x [2];
const flt_t b_2 = x [1] + x [3];
f [0] = b_0 + b_2;
f [2] = b_0 - b_2;
}
/* 2-point FFT */
else if (_nbr_bits == 1)
{
f [0] = x [0] + x [1];
f [1] = x [0] - x [1];
}
/* 1-point FFT */
else
{
f [0] = x [0];
}
}
/*==========================================================================*/
/* Name: do_ifft */
/* Description: Compute the inverse FFT of the array. Notice that */
/* IFFT (FFT (x)) = x * length (x). Data must be */
/* post-scaled. */
/* Input parameters: */
/* - f: pointer on the source array (frequencies). */
/* f [0...length(x)/2] = real values, */
/* f [length(x)/2+1...length(x)] = imaginary values of */
/* coefficents 1...length(x)-1. */
/* Output parameters: */
/* - x: pointer on the destination array (time). */
/* Throws: Nothing */
/*==========================================================================*/
void FFTReal::do_ifft (const flt_t f [], flt_t x []) const
{
/*______________________________________________
*
* General case
*______________________________________________
*/
if (_nbr_bits > 2)
{
flt_t * sf = const_cast <flt_t *> (f);
flt_t * df;
flt_t * df_temp;
if (_nbr_bits & 1)
{
df = _buffer_ptr;
df_temp = x;
}
else
{
df = x;
df_temp = _buffer_ptr;
}
/* Do the transformation in several pass */
{
int pass;
long nbr_coef;
long h_nbr_coef;
long d_nbr_coef;
long coef_index;
/* First pass */
for (pass = _nbr_bits - 1; pass >= 3; --pass)
{
coef_index = 0;
nbr_coef = 1 << pass;
h_nbr_coef = nbr_coef >> 1;
d_nbr_coef = nbr_coef << 1;
const flt_t *const cos_ptr = _trigo_lut.get_ptr (pass);
do
{
long i;
const flt_t * const sfr = sf + coef_index;
const flt_t * const sfi = sfr + nbr_coef;
flt_t * const df1r = df + coef_index;
flt_t * const df2r = df1r + nbr_coef;
/* Extreme coefficients are always real */
df1r [0] = sfr [0] + sfi [0]; // + sfr [nbr_coef]
df2r [0] = sfr [0] - sfi [0]; // - sfr [nbr_coef]
df1r [h_nbr_coef] = sfr [h_nbr_coef] * 2;
df2r [h_nbr_coef] = sfi [h_nbr_coef] * 2;
/* Others are conjugate complex numbers */
flt_t * const df1i = df1r + h_nbr_coef;
flt_t * const df2i = df1i + nbr_coef;
for (i = 1; i < h_nbr_coef; ++ i)
{
df1r [i] = sfr [i] + sfi [-i]; // + sfr [nbr_coef - i]
df1i [i] = sfi [i] - sfi [nbr_coef - i];
const flt_t c = cos_ptr [i]; // cos (i*PI/nbr_coef);
const flt_t s = cos_ptr [h_nbr_coef - i]; // sin (i*PI/nbr_coef);
const flt_t vr = sfr [i] - sfi [-i]; // - sfr [nbr_coef - i]
const flt_t vi = sfi [i] + sfi [nbr_coef - i];
df2r [i] = vr * c + vi * s;
df2i [i] = vi * c - vr * s;
}
coef_index += d_nbr_coef;
}
while (coef_index < _length);
/* Prepare to the next pass */
if (pass < _nbr_bits - 1)
{
flt_t * const temp_ptr = df;
df = sf;
sf = temp_ptr;
}
else
{
sf = df;
df = df_temp;
}
}
/* Antepenultimate pass */
{
const flt_t sqrt2_2 = _sqrt2_2;
coef_index = 0;
do
{
df [coef_index] = sf [coef_index] + sf [coef_index + 4];
df [coef_index + 4] = sf [coef_index] - sf [coef_index + 4];
df [coef_index + 2] = sf [coef_index + 2] * 2;
df [coef_index + 6] = sf [coef_index + 6] * 2;
df [coef_index + 1] = sf [coef_index + 1] + sf [coef_index + 3];
df [coef_index + 3] = sf [coef_index + 5] - sf [coef_index + 7];
const flt_t vr = sf [coef_index + 1] - sf [coef_index + 3];
const flt_t vi = sf [coef_index + 5] + sf [coef_index + 7];
df [coef_index + 5] = (vr + vi) * sqrt2_2;
df [coef_index + 7] = (vi - vr) * sqrt2_2;
coef_index += 8;
}
while (coef_index < _length);
}
/* Penultimate and last pass at once */
{
coef_index = 0;
const long * bit_rev_lut_ptr = _bit_rev_lut.get_ptr ();
const flt_t * sf2 = df;
do
{
{
const flt_t b_0 = sf2 [0] + sf2 [2];
const flt_t b_2 = sf2 [0] - sf2 [2];
const flt_t b_1 = sf2 [1] * 2;
const flt_t b_3 = sf2 [3] * 2;
x [bit_rev_lut_ptr [0]] = b_0 + b_1;
x [bit_rev_lut_ptr [1]] = b_0 - b_1;
x [bit_rev_lut_ptr [2]] = b_2 + b_3;
x [bit_rev_lut_ptr [3]] = b_2 - b_3;
}
{
const flt_t b_0 = sf2 [4] + sf2 [6];
const flt_t b_2 = sf2 [4] - sf2 [6];
const flt_t b_1 = sf2 [5] * 2;
const flt_t b_3 = sf2 [7] * 2;
x [bit_rev_lut_ptr [4]] = b_0 + b_1;
x [bit_rev_lut_ptr [5]] = b_0 - b_1;
x [bit_rev_lut_ptr [6]] = b_2 + b_3;
x [bit_rev_lut_ptr [7]] = b_2 - b_3;
}
sf2 += 8;
coef_index += 8;
bit_rev_lut_ptr += 8;
}
while (coef_index < _length);
}
}
}
/*______________________________________________
*
* Special cases
*______________________________________________
*/
/* 4-point IFFT */
else if (_nbr_bits == 2)
{
const flt_t b_0 = f [0] + f [2];
const flt_t b_2 = f [0] - f [2];
x [0] = b_0 + f [1] * 2;
x [2] = b_0 - f [1] * 2;
x [1] = b_2 + f [3] * 2;
x [3] = b_2 - f [3] * 2;
}
/* 2-point IFFT */
else if (_nbr_bits == 1)
{
x [0] = f [0] + f [1];
x [1] = f [0] - f [1];
}
/* 1-point IFFT */
else
{
x [0] = f [0];
}
}
/*==========================================================================*/
/* Name: rescale */
/* Description: Scale an array by divide each element by its length. */
/* This function should be called after FFT + IFFT. */
/* Input/Output parameters: */
/* - x: pointer on array to rescale (time or frequency). */
/* Throws: Nothing */
/*==========================================================================*/
void FFTReal::rescale (flt_t x []) const
{
const flt_t mul = flt_t (1.0 / _length);
long i = _length - 1;
do
{
x [i] *= mul;
--i;
}
while (i >= 0);
}
/*\\\ NESTED CLASS MEMBER FUNCTIONS \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/
/*==========================================================================*/
/* Name: Constructor */
/* Input parameters: */
/* - nbr_bits: number of bits of the array on which we want to do a */
/* FFT. Range: > 0 */
/* Throws: std::bad_alloc */
/*==========================================================================*/
FFTReal::BitReversedLUT::BitReversedLUT (const int nbr_bits)
{
long length;
long cnt;
long br_index;
long bit;
length = 1L << nbr_bits;
_ptr = new long [length];
br_index = 0;
_ptr [0] = 0;
for (cnt = 1; cnt < length; ++cnt)
{
/* ++br_index (bit reversed) */
bit = length >> 1;
while (((br_index ^= bit) & bit) == 0)
{
bit >>= 1;
}
_ptr [cnt] = br_index;
}
}
/*==========================================================================*/
/* Name: Destructor */
/*==========================================================================*/
FFTReal::BitReversedLUT::~BitReversedLUT (void)
{
delete [] _ptr;
_ptr = 0;
}
/*==========================================================================*/
/* Name: Constructor */
/* Input parameters: */
/* - nbr_bits: number of bits of the array on which we want to do a */
/* FFT. Range: > 0 */
/* Throws: std::bad_alloc, anything */
/*==========================================================================*/
FFTReal::TrigoLUT::TrigoLUT (const int nbr_bits)
{
long total_len;
_ptr = 0;
if (nbr_bits > 3)
{
total_len = (1L << (nbr_bits - 1)) - 4;
_ptr = new flt_t [total_len];
const double PI = atan (1) * 4;
for (int level = 3; level < nbr_bits; ++level)
{
const long level_len = 1L << (level - 1);
flt_t * const level_ptr = const_cast<flt_t *> (get_ptr (level));
const double mul = PI / (level_len << 1);
for (long i = 0; i < level_len; ++ i)
{
level_ptr [i] = (flt_t) cos (i * mul);
}
}
}
}
/*==========================================================================*/
/* Name: Destructor */
/*==========================================================================*/
FFTReal::TrigoLUT::~TrigoLUT (void)
{
delete [] _ptr;
_ptr = 0;
}
#if defined (_MSC_VER)
#pragma pack (pop)
#endif // _MSC_VER
/*****************************************************************************
LEGAL
Source code may be freely used for any purpose, including commercial
applications. Programs must display in their "About" dialog-box (or
documentation) a text telling they use these routines by Laurent de Soras.
Modified source code can be distributed, but modifications must be clearly
indicated.
CONTACT
Laurent de Soras
92 avenue Albert 1er
92500 Rueil-Malmaison
France
ldesoras@club-internet.fr
*****************************************************************************/
/*\\\ EOF \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/