653 lines
17 KiB
C
653 lines
17 KiB
C
/*
|
|
* This source code is a product of Sun Microsystems, Inc. and is provided
|
|
* for unrestricted use. Users may copy or modify this source code without
|
|
* charge.
|
|
*
|
|
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
|
|
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
|
|
*
|
|
* Sun source code is provided with no support and without any obligation on
|
|
* the part of Sun Microsystems, Inc. to assist in its use, correction,
|
|
* modification or enhancement.
|
|
*
|
|
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
|
|
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
|
|
* OR ANY PART THEREOF.
|
|
*
|
|
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
|
|
* or profits or other special, indirect and consequential damages, even if
|
|
* Sun has been advised of the possibility of such damages.
|
|
*
|
|
* Sun Microsystems, Inc.
|
|
* 2550 Garcia Avenue
|
|
* Mountain View, California 94043
|
|
*/
|
|
|
|
/*
|
|
* g72x.c
|
|
*
|
|
* Common routines for G.721 and G.723 conversions.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "g72x.h"
|
|
#include "g72x_priv.h"
|
|
|
|
static G72x_STATE * g72x_state_new (void) ;
|
|
static int unpack_bytes (int bits, int blocksize, const unsigned char * block, short * samples) ;
|
|
static int pack_bytes (int bits, const short * samples, unsigned char * block) ;
|
|
|
|
static
|
|
short power2 [15] =
|
|
{ 1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
|
|
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000
|
|
} ;
|
|
|
|
/*
|
|
* quan()
|
|
*
|
|
* quantizes the input val against the table of size short integers.
|
|
* It returns i if table[i - 1] <= val < table[i].
|
|
*
|
|
* Using linear search for simple coding.
|
|
*/
|
|
static
|
|
int quan (int val, short *table, int size)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < size; i++)
|
|
if (val < *table++)
|
|
break;
|
|
return (i);
|
|
}
|
|
|
|
/*
|
|
* fmult()
|
|
*
|
|
* returns the integer product of the 14-bit integer "an" and
|
|
* "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
|
|
*/
|
|
static
|
|
int fmult (int an, int srn)
|
|
{
|
|
short anmag, anexp, anmant;
|
|
short wanexp, wanmant;
|
|
short retval;
|
|
|
|
anmag = (an > 0) ? an : ((-an) & 0x1FFF);
|
|
anexp = quan(anmag, power2, 15) - 6;
|
|
anmant = (anmag == 0) ? 32 :
|
|
(anexp >= 0) ? anmag >> anexp : anmag << -anexp;
|
|
wanexp = anexp + ((srn >> 6) & 0xF) - 13;
|
|
|
|
/*
|
|
** The original was :
|
|
** wanmant = (anmant * (srn & 0x37) + 0x30) >> 4 ;
|
|
** but could see no valid reason for the + 0x30.
|
|
** Removed it and it improved the SNR of the codec.
|
|
*/
|
|
|
|
wanmant = (anmant * (srn & 0x37)) >> 4 ;
|
|
|
|
retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
|
|
(wanmant >> -wanexp);
|
|
|
|
return (((an ^ srn) < 0) ? -retval : retval);
|
|
}
|
|
|
|
static G72x_STATE * g72x_state_new (void)
|
|
{ return calloc (1, sizeof (G72x_STATE)) ;
|
|
}
|
|
|
|
/*
|
|
* private_init_state()
|
|
*
|
|
* This routine initializes and/or resets the G72x_PRIVATE structure
|
|
* pointed to by 'state_ptr'.
|
|
* All the initial state values are specified in the CCITT G.721 document.
|
|
*/
|
|
void private_init_state (G72x_STATE *state_ptr)
|
|
{
|
|
int cnta;
|
|
|
|
state_ptr->yl = 34816;
|
|
state_ptr->yu = 544;
|
|
state_ptr->dms = 0;
|
|
state_ptr->dml = 0;
|
|
state_ptr->ap = 0;
|
|
for (cnta = 0; cnta < 2; cnta++) {
|
|
state_ptr->a[cnta] = 0;
|
|
state_ptr->pk[cnta] = 0;
|
|
state_ptr->sr[cnta] = 32;
|
|
}
|
|
for (cnta = 0; cnta < 6; cnta++) {
|
|
state_ptr->b[cnta] = 0;
|
|
state_ptr->dq[cnta] = 32;
|
|
}
|
|
state_ptr->td = 0;
|
|
} /* private_init_state */
|
|
|
|
struct g72x_state * g72x_reader_init (int codec, int *blocksize, int *samplesperblock)
|
|
{ G72x_STATE *pstate ;
|
|
|
|
if ((pstate = g72x_state_new ()) == NULL)
|
|
return NULL ;
|
|
|
|
private_init_state (pstate) ;
|
|
|
|
pstate->encoder = NULL ;
|
|
|
|
switch (codec)
|
|
{ case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */
|
|
pstate->decoder = g723_16_decoder ;
|
|
*blocksize = G723_16_BYTES_PER_BLOCK ;
|
|
*samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
|
|
pstate->codec_bits = 2 ;
|
|
pstate->blocksize = G723_16_BYTES_PER_BLOCK ;
|
|
pstate->samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
|
|
break ;
|
|
|
|
case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */
|
|
pstate->decoder = g723_24_decoder ;
|
|
*blocksize = G723_24_BYTES_PER_BLOCK ;
|
|
*samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
|
|
pstate->codec_bits = 3 ;
|
|
pstate->blocksize = G723_24_BYTES_PER_BLOCK ;
|
|
pstate->samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
|
|
break ;
|
|
|
|
case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */
|
|
pstate->decoder = g721_decoder ;
|
|
*blocksize = G721_32_BYTES_PER_BLOCK ;
|
|
*samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
|
|
pstate->codec_bits = 4 ;
|
|
pstate->blocksize = G721_32_BYTES_PER_BLOCK ;
|
|
pstate->samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
|
|
break ;
|
|
|
|
case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */
|
|
pstate->decoder = g723_40_decoder ;
|
|
*blocksize = G721_40_BYTES_PER_BLOCK ;
|
|
*samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
|
|
pstate->codec_bits = 5 ;
|
|
pstate->blocksize = G721_40_BYTES_PER_BLOCK ;
|
|
pstate->samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
|
|
break ;
|
|
|
|
default :
|
|
free (pstate) ;
|
|
return NULL ;
|
|
} ;
|
|
|
|
return pstate ;
|
|
} /* g72x_reader_init */
|
|
|
|
struct g72x_state * g72x_writer_init (int codec, int *blocksize, int *samplesperblock)
|
|
{ G72x_STATE *pstate ;
|
|
|
|
if ((pstate = g72x_state_new ()) == NULL)
|
|
return NULL ;
|
|
|
|
private_init_state (pstate) ;
|
|
pstate->decoder = NULL ;
|
|
|
|
switch (codec)
|
|
{ case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */
|
|
pstate->encoder = g723_16_encoder ;
|
|
*blocksize = G723_16_BYTES_PER_BLOCK ;
|
|
*samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
|
|
pstate->codec_bits = 2 ;
|
|
pstate->blocksize = G723_16_BYTES_PER_BLOCK ;
|
|
pstate->samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
|
|
break ;
|
|
|
|
case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */
|
|
pstate->encoder = g723_24_encoder ;
|
|
*blocksize = G723_24_BYTES_PER_BLOCK ;
|
|
*samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
|
|
pstate->codec_bits = 3 ;
|
|
pstate->blocksize = G723_24_BYTES_PER_BLOCK ;
|
|
pstate->samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
|
|
break ;
|
|
|
|
case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */
|
|
pstate->encoder = g721_encoder ;
|
|
*blocksize = G721_32_BYTES_PER_BLOCK ;
|
|
*samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
|
|
pstate->codec_bits = 4 ;
|
|
pstate->blocksize = G721_32_BYTES_PER_BLOCK ;
|
|
pstate->samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
|
|
break ;
|
|
|
|
case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */
|
|
pstate->encoder = g723_40_encoder ;
|
|
*blocksize = G721_40_BYTES_PER_BLOCK ;
|
|
*samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
|
|
pstate->codec_bits = 5 ;
|
|
pstate->blocksize = G721_40_BYTES_PER_BLOCK ;
|
|
pstate->samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
|
|
break ;
|
|
|
|
default :
|
|
free (pstate) ;
|
|
return NULL ;
|
|
} ;
|
|
|
|
return pstate ;
|
|
} /* g72x_writer_init */
|
|
|
|
int g72x_decode_block (G72x_STATE *pstate, const unsigned char *block, short *samples)
|
|
{ int k, count ;
|
|
|
|
count = unpack_bytes (pstate->codec_bits, pstate->blocksize, block, samples) ;
|
|
|
|
for (k = 0 ; k < count ; k++)
|
|
samples [k] = pstate->decoder (samples [k], pstate) ;
|
|
|
|
return 0 ;
|
|
} /* g72x_decode_block */
|
|
|
|
int g72x_encode_block (G72x_STATE *pstate, short *samples, unsigned char *block)
|
|
{ int k, count ;
|
|
|
|
for (k = 0 ; k < pstate->samplesperblock ; k++)
|
|
samples [k] = pstate->encoder (samples [k], pstate) ;
|
|
|
|
count = pack_bytes (pstate->codec_bits, samples, block) ;
|
|
|
|
return count ;
|
|
} /* g72x_encode_block */
|
|
|
|
/*
|
|
* predictor_zero()
|
|
*
|
|
* computes the estimated signal from 6-zero predictor.
|
|
*
|
|
*/
|
|
int predictor_zero (G72x_STATE *state_ptr)
|
|
{
|
|
int i;
|
|
int sezi;
|
|
|
|
sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
|
|
for (i = 1; i < 6; i++) /* ACCUM */
|
|
sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
|
|
return (sezi);
|
|
}
|
|
/*
|
|
* predictor_pole()
|
|
*
|
|
* computes the estimated signal from 2-pole predictor.
|
|
*
|
|
*/
|
|
int predictor_pole(G72x_STATE *state_ptr)
|
|
{
|
|
return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
|
|
fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
|
|
}
|
|
/*
|
|
* step_size()
|
|
*
|
|
* computes the quantization step size of the adaptive quantizer.
|
|
*
|
|
*/
|
|
int step_size (G72x_STATE *state_ptr)
|
|
{
|
|
int y;
|
|
int dif;
|
|
int al;
|
|
|
|
if (state_ptr->ap >= 256)
|
|
return (state_ptr->yu);
|
|
else {
|
|
y = state_ptr->yl >> 6;
|
|
dif = state_ptr->yu - y;
|
|
al = state_ptr->ap >> 2;
|
|
if (dif > 0)
|
|
y += (dif * al) >> 6;
|
|
else if (dif < 0)
|
|
y += (dif * al + 0x3F) >> 6;
|
|
return (y);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* quantize()
|
|
*
|
|
* Given a raw sample, 'd', of the difference signal and a
|
|
* quantization step size scale factor, 'y', this routine returns the
|
|
* ADPCM codeword to which that sample gets quantized. The step
|
|
* size scale factor division operation is done in the log base 2 domain
|
|
* as a subtraction.
|
|
*/
|
|
int quantize(
|
|
int d, /* Raw difference signal sample */
|
|
int y, /* Step size multiplier */
|
|
short *table, /* quantization table */
|
|
int size) /* table size of short integers */
|
|
{
|
|
short dqm; /* Magnitude of 'd' */
|
|
short expon; /* Integer part of base 2 log of 'd' */
|
|
short mant; /* Fractional part of base 2 log */
|
|
short dl; /* Log of magnitude of 'd' */
|
|
short dln; /* Step size scale factor normalized log */
|
|
int i;
|
|
|
|
/*
|
|
* LOG
|
|
*
|
|
* Compute base 2 log of 'd', and store in 'dl'.
|
|
*/
|
|
dqm = abs(d);
|
|
expon = quan(dqm >> 1, power2, 15);
|
|
mant = ((dqm << 7) >> expon) & 0x7F; /* Fractional portion. */
|
|
dl = (expon << 7) + mant;
|
|
|
|
/*
|
|
* SUBTB
|
|
*
|
|
* "Divide" by step size multiplier.
|
|
*/
|
|
dln = dl - (y >> 2);
|
|
|
|
/*
|
|
* QUAN
|
|
*
|
|
* Obtain codword i for 'd'.
|
|
*/
|
|
i = quan(dln, table, size);
|
|
if (d < 0) /* take 1's complement of i */
|
|
return ((size << 1) + 1 - i);
|
|
else if (i == 0) /* take 1's complement of 0 */
|
|
return ((size << 1) + 1); /* new in 1988 */
|
|
else
|
|
return (i);
|
|
}
|
|
/*
|
|
* reconstruct()
|
|
*
|
|
* Returns reconstructed difference signal 'dq' obtained from
|
|
* codeword 'i' and quantization step size scale factor 'y'.
|
|
* Multiplication is performed in log base 2 domain as addition.
|
|
*/
|
|
int
|
|
reconstruct(
|
|
int sign, /* 0 for non-negative value */
|
|
int dqln, /* G.72x codeword */
|
|
int y) /* Step size multiplier */
|
|
{
|
|
short dql; /* Log of 'dq' magnitude */
|
|
short dex; /* Integer part of log */
|
|
short dqt;
|
|
short dq; /* Reconstructed difference signal sample */
|
|
|
|
dql = dqln + (y >> 2); /* ADDA */
|
|
|
|
if (dql < 0) {
|
|
return ((sign) ? -0x8000 : 0);
|
|
} else { /* ANTILOG */
|
|
dex = (dql >> 7) & 15;
|
|
dqt = 128 + (dql & 127);
|
|
dq = (dqt << 7) >> (14 - dex);
|
|
return ((sign) ? (dq - 0x8000) : dq);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* update()
|
|
*
|
|
* updates the state variables for each output code
|
|
*/
|
|
void
|
|
update(
|
|
int code_size, /* distinguish 723_40 with others */
|
|
int y, /* quantizer step size */
|
|
int wi, /* scale factor multiplier */
|
|
int fi, /* for long/short term energies */
|
|
int dq, /* quantized prediction difference */
|
|
int sr, /* reconstructed signal */
|
|
int dqsez, /* difference from 2-pole predictor */
|
|
G72x_STATE *state_ptr) /* coder state pointer */
|
|
{
|
|
int cnt;
|
|
short mag, expon; /* Adaptive predictor, FLOAT A */
|
|
short a2p = 0; /* LIMC */
|
|
short a1ul; /* UPA1 */
|
|
short pks1; /* UPA2 */
|
|
short fa1;
|
|
char tr; /* tone/transition detector */
|
|
short ylint, thr2, dqthr;
|
|
short ylfrac, thr1;
|
|
short pk0;
|
|
|
|
pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */
|
|
|
|
mag = dq & 0x7FFF; /* prediction difference magnitude */
|
|
/* TRANS */
|
|
ylint = state_ptr->yl >> 15; /* exponent part of yl */
|
|
ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */
|
|
thr1 = (32 + ylfrac) << ylint; /* threshold */
|
|
thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */
|
|
dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */
|
|
if (state_ptr->td == 0) /* signal supposed voice */
|
|
tr = 0;
|
|
else if (mag <= dqthr) /* supposed data, but small mag */
|
|
tr = 0; /* treated as voice */
|
|
else /* signal is data (modem) */
|
|
tr = 1;
|
|
|
|
/*
|
|
* Quantizer scale factor adaptation.
|
|
*/
|
|
|
|
/* FUNCTW & FILTD & DELAY */
|
|
/* update non-steady state step size multiplier */
|
|
state_ptr->yu = y + ((wi - y) >> 5);
|
|
|
|
/* LIMB */
|
|
if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */
|
|
state_ptr->yu = 544;
|
|
else if (state_ptr->yu > 5120)
|
|
state_ptr->yu = 5120;
|
|
|
|
/* FILTE & DELAY */
|
|
/* update steady state step size multiplier */
|
|
state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
|
|
|
|
/*
|
|
* Adaptive predictor coefficients.
|
|
*/
|
|
if (tr == 1) { /* reset a's and b's for modem signal */
|
|
state_ptr->a[0] = 0;
|
|
state_ptr->a[1] = 0;
|
|
state_ptr->b[0] = 0;
|
|
state_ptr->b[1] = 0;
|
|
state_ptr->b[2] = 0;
|
|
state_ptr->b[3] = 0;
|
|
state_ptr->b[4] = 0;
|
|
state_ptr->b[5] = 0;
|
|
} else { /* update a's and b's */
|
|
pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */
|
|
|
|
/* update predictor pole a[1] */
|
|
a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
|
|
if (dqsez != 0) {
|
|
fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
|
|
if (fa1 < -8191) /* a2p = function of fa1 */
|
|
a2p -= 0x100;
|
|
else if (fa1 > 8191)
|
|
a2p += 0xFF;
|
|
else
|
|
a2p += fa1 >> 5;
|
|
|
|
if (pk0 ^ state_ptr->pk[1])
|
|
{ /* LIMC */
|
|
if (a2p <= -12160)
|
|
a2p = -12288;
|
|
else if (a2p >= 12416)
|
|
a2p = 12288;
|
|
else
|
|
a2p -= 0x80;
|
|
}
|
|
else if (a2p <= -12416)
|
|
a2p = -12288;
|
|
else if (a2p >= 12160)
|
|
a2p = 12288;
|
|
else
|
|
a2p += 0x80;
|
|
}
|
|
|
|
/* TRIGB & DELAY */
|
|
state_ptr->a[1] = a2p;
|
|
|
|
/* UPA1 */
|
|
/* update predictor pole a[0] */
|
|
state_ptr->a[0] -= state_ptr->a[0] >> 8;
|
|
if (dqsez != 0)
|
|
{ if (pks1 == 0)
|
|
state_ptr->a[0] += 192;
|
|
else
|
|
state_ptr->a[0] -= 192;
|
|
} ;
|
|
|
|
/* LIMD */
|
|
a1ul = 15360 - a2p;
|
|
if (state_ptr->a[0] < -a1ul)
|
|
state_ptr->a[0] = -a1ul;
|
|
else if (state_ptr->a[0] > a1ul)
|
|
state_ptr->a[0] = a1ul;
|
|
|
|
/* UPB : update predictor zeros b[6] */
|
|
for (cnt = 0; cnt < 6; cnt++) {
|
|
if (code_size == 5) /* for 40Kbps G.723 */
|
|
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
|
|
else /* for G.721 and 24Kbps G.723 */
|
|
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
|
|
if (dq & 0x7FFF) { /* XOR */
|
|
if ((dq ^ state_ptr->dq[cnt]) >= 0)
|
|
state_ptr->b[cnt] += 128;
|
|
else
|
|
state_ptr->b[cnt] -= 128;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (cnt = 5; cnt > 0; cnt--)
|
|
state_ptr->dq[cnt] = state_ptr->dq[cnt-1];
|
|
/* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
|
|
if (mag == 0) {
|
|
state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20;
|
|
} else {
|
|
expon = quan(mag, power2, 15);
|
|
state_ptr->dq[0] = (dq >= 0) ?
|
|
(expon << 6) + ((mag << 6) >> expon) :
|
|
(expon << 6) + ((mag << 6) >> expon) - 0x400;
|
|
}
|
|
|
|
state_ptr->sr[1] = state_ptr->sr[0];
|
|
/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
|
|
if (sr == 0) {
|
|
state_ptr->sr[0] = 0x20;
|
|
} else if (sr > 0) {
|
|
expon = quan(sr, power2, 15);
|
|
state_ptr->sr[0] = (expon << 6) + ((sr << 6) >> expon);
|
|
} else if (sr > -32768) {
|
|
mag = -sr;
|
|
expon = quan(mag, power2, 15);
|
|
state_ptr->sr[0] = (expon << 6) + ((mag << 6) >> expon) - 0x400;
|
|
} else
|
|
state_ptr->sr[0] = (short) 0xFC20;
|
|
|
|
/* DELAY A */
|
|
state_ptr->pk[1] = state_ptr->pk[0];
|
|
state_ptr->pk[0] = pk0;
|
|
|
|
/* TONE */
|
|
if (tr == 1) /* this sample has been treated as data */
|
|
state_ptr->td = 0; /* next one will be treated as voice */
|
|
else if (a2p < -11776) /* small sample-to-sample correlation */
|
|
state_ptr->td = 1; /* signal may be data */
|
|
else /* signal is voice */
|
|
state_ptr->td = 0;
|
|
|
|
/*
|
|
* Adaptation speed control.
|
|
*/
|
|
state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */
|
|
state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */
|
|
|
|
if (tr == 1)
|
|
state_ptr->ap = 256;
|
|
else if (y < 1536) /* SUBTC */
|
|
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
|
|
else if (state_ptr->td == 1)
|
|
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
|
|
else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
|
|
(state_ptr->dml >> 3))
|
|
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
|
|
else
|
|
state_ptr->ap += (-state_ptr->ap) >> 4;
|
|
|
|
return ;
|
|
} /* update */
|
|
|
|
/*------------------------------------------------------------------------------
|
|
*/
|
|
|
|
static int
|
|
unpack_bytes (int bits, int blocksize, const unsigned char * block, short * samples)
|
|
{ unsigned int in_buffer = 0 ;
|
|
unsigned char in_byte ;
|
|
int k, in_bits = 0, bindex = 0 ;
|
|
|
|
for (k = 0 ; bindex <= blocksize && k < G72x_BLOCK_SIZE ; k++)
|
|
{ if (in_bits < bits)
|
|
{ in_byte = block [bindex++] ;
|
|
|
|
in_buffer |= (in_byte << in_bits);
|
|
in_bits += 8;
|
|
}
|
|
samples [k] = in_buffer & ((1 << bits) - 1);
|
|
in_buffer >>= bits;
|
|
in_bits -= bits;
|
|
} ;
|
|
|
|
return k ;
|
|
} /* unpack_bytes */
|
|
|
|
static int
|
|
pack_bytes (int bits, const short * samples, unsigned char * block)
|
|
{
|
|
unsigned int out_buffer = 0 ;
|
|
int k, bindex = 0, out_bits = 0 ;
|
|
unsigned char out_byte ;
|
|
|
|
for (k = 0 ; k < G72x_BLOCK_SIZE ; k++)
|
|
{ out_buffer |= (samples [k] << out_bits) ;
|
|
out_bits += bits ;
|
|
if (out_bits >= 8)
|
|
{ out_byte = out_buffer & 0xFF ;
|
|
out_bits -= 8 ;
|
|
out_buffer >>= 8 ;
|
|
block [bindex++] = out_byte ;
|
|
}
|
|
} ;
|
|
|
|
return bindex ;
|
|
} /* pack_bytes */
|
|
|
|
/*
|
|
** Do not edit or modify anything in this comment block.
|
|
** The arch-tag line is a file identity tag for the GNU Arch
|
|
** revision control system.
|
|
**
|
|
** arch-tag: 6298dc75-fd0f-4062-9b90-f73ed69f22d4
|
|
*/
|
|
|