233 lines
11 KiB
C
233 lines
11 KiB
C
/***********************************************************************
|
|
Copyright (c) 2006-2010, Skype Limited. All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, (subject to the limitations in the disclaimer below)
|
|
are permitted provided that the following conditions are met:
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
- Neither the name of Skype Limited, nor the names of specific
|
|
contributors, may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED
|
|
BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
|
CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
|
|
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
***********************************************************************/
|
|
|
|
/* *
|
|
* SKP_Silk_MA.c *
|
|
* *
|
|
* Variable order MA filter *
|
|
* *
|
|
* Copyright 2006 (c), Skype Limited *
|
|
* Date: 060221 *
|
|
* */
|
|
#include "SKP_Silk_SigProc_FIX.h"
|
|
|
|
/* Variable order MA filter */
|
|
void SKP_Silk_MA(
|
|
const SKP_int16 *in, /* I: input signal */
|
|
const SKP_int16 *B, /* I: MA coefficients, Q13 [order+1] */
|
|
SKP_int32 *S, /* I/O: state vector [order] */
|
|
SKP_int16 *out, /* O: output signal */
|
|
const SKP_int32 len, /* I: signal length */
|
|
const SKP_int32 order /* I: filter order */
|
|
)
|
|
{
|
|
SKP_int k, d, in16;
|
|
SKP_int32 out32;
|
|
|
|
for( k = 0; k < len; k++ ) {
|
|
in16 = in[ k ];
|
|
out32 = SKP_SMLABB( S[ 0 ], in16, B[ 0 ] );
|
|
out32 = SKP_RSHIFT_ROUND( out32, 13 );
|
|
|
|
for( d = 1; d < order; d++ ) {
|
|
S[ d - 1 ] = SKP_SMLABB( S[ d ], in16, B[ d ] );
|
|
}
|
|
S[ order - 1 ] = SKP_SMULBB( in16, B[ order ] );
|
|
|
|
/* Limit */
|
|
out[ k ] = (SKP_int16)SKP_SAT16( out32 );
|
|
}
|
|
}
|
|
/* Variable order MA prediction error filter */
|
|
void SKP_Silk_MA_Prediction(
|
|
const SKP_int16 *in, /* I: Input signal */
|
|
const SKP_int16 *B, /* I: MA prediction coefficients, Q12 [order] */
|
|
SKP_int32 *S, /* I/O: State vector [order] */
|
|
SKP_int16 *out, /* O: Output signal */
|
|
const SKP_int32 len, /* I: Signal length */
|
|
const SKP_int32 order /* I: Filter order */
|
|
)
|
|
{
|
|
SKP_int k, d, in16;
|
|
SKP_int32 out32;
|
|
SKP_int32 B32;
|
|
|
|
if( ( order & 1 ) == 0 && (SKP_int32)( (SKP_int_ptr_size)B & 3 ) == 0 ) {
|
|
/* Even order and 4-byte aligned coefficient array */
|
|
|
|
/* NOTE: the code below loads two int16 values in an int32, and multiplies each using the */
|
|
/* SMLABB and SMLABT instructions. On a big-endian CPU the two int16 variables would be */
|
|
/* loaded in reverse order and the code will give the wrong result. In that case swapping */
|
|
/* the SMLABB and SMLABT instructions should solve the problem. */
|
|
for( k = 0; k < len; k++ ) {
|
|
in16 = in[ k ];
|
|
out32 = SKP_LSHIFT( in16, 12 ) - S[ 0 ];
|
|
out32 = SKP_RSHIFT_ROUND( out32, 12 );
|
|
|
|
for( d = 0; d < order - 2; d += 2 ) {
|
|
B32 = *( (SKP_int32*)&B[ d ] ); /* read two coefficients at once */
|
|
S[ d ] = SKP_SMLABB_ovflw( S[ d + 1 ], in16, B32 );
|
|
S[ d + 1 ] = SKP_SMLABT_ovflw( S[ d + 2 ], in16, B32 );
|
|
}
|
|
B32 = *( (SKP_int32*)&B[ d ] ); /* read two coefficients at once */
|
|
S[ order - 2 ] = SKP_SMLABB_ovflw( S[ order - 1 ], in16, B32 );
|
|
S[ order - 1 ] = SKP_SMULBT( in16, B32 );
|
|
|
|
/* Limit */
|
|
out[ k ] = (SKP_int16)SKP_SAT16( out32 );
|
|
}
|
|
} else {
|
|
/* Odd order or not 4-byte aligned coefficient array */
|
|
for( k = 0; k < len; k++ ) {
|
|
in16 = in[ k ];
|
|
out32 = SKP_LSHIFT( in16, 12 ) - S[ 0 ];
|
|
out32 = SKP_RSHIFT_ROUND( out32, 12 );
|
|
|
|
for( d = 0; d < order - 1; d++ ) {
|
|
S[ d ] = SKP_SMLABB_ovflw( S[ d + 1 ], in16, B[ d ] );
|
|
}
|
|
S[ order - 1 ] = SKP_SMULBB( in16, B[ order - 1 ] );
|
|
|
|
/* Limit */
|
|
out[ k ] = (SKP_int16)SKP_SAT16( out32 );
|
|
}
|
|
}
|
|
}
|
|
|
|
void SKP_Silk_MA_Prediction_Q13(
|
|
const SKP_int16 *in, /* I: input signal */
|
|
const SKP_int16 *B, /* I: MA prediction coefficients, Q13 [order] */
|
|
SKP_int32 *S, /* I/O: state vector [order] */
|
|
SKP_int16 *out, /* O: output signal */
|
|
SKP_int32 len, /* I: signal length */
|
|
SKP_int32 order /* I: filter order */
|
|
)
|
|
{
|
|
SKP_int k, d, in16;
|
|
SKP_int32 out32, B32;
|
|
|
|
if( ( order & 1 ) == 0 && (SKP_int32)( (SKP_int_ptr_size)B & 3 ) == 0 ) {
|
|
/* Even order and 4-byte aligned coefficient array */
|
|
|
|
/* NOTE: the code below loads two int16 values in an int32, and multiplies each using the */
|
|
/* SMLABB and SMLABT instructions. On a big-endian CPU the two int16 variables would be */
|
|
/* loaded in reverse order and the code will give the wrong result. In that case swapping */
|
|
/* the SMLABB and SMLABT instructions should solve the problem. */
|
|
for( k = 0; k < len; k++ ) {
|
|
in16 = in[ k ];
|
|
out32 = SKP_LSHIFT( in16, 13 ) - S[ 0 ];
|
|
out32 = SKP_RSHIFT_ROUND( out32, 13 );
|
|
|
|
for( d = 0; d < order - 2; d += 2 ) {
|
|
B32 = *( (SKP_int32*)&B[ d ] ); /* read two coefficients at once */
|
|
S[ d ] = SKP_SMLABB( S[ d + 1 ], in16, B32 );
|
|
S[ d + 1 ] = SKP_SMLABT( S[ d + 2 ], in16, B32 );
|
|
}
|
|
B32 = *( (SKP_int32*)&B[ d ] ); /* read two coefficients at once */
|
|
S[ order - 2 ] = SKP_SMLABB( S[ order - 1 ], in16, B32 );
|
|
S[ order - 1 ] = SKP_SMULBT( in16, B32 );
|
|
|
|
/* Limit */
|
|
out[ k ] = (SKP_int16)SKP_SAT16( out32 );
|
|
}
|
|
} else {
|
|
/* Odd order or not 4-byte aligned coefficient array */
|
|
for( k = 0; k < len; k++ ) {
|
|
in16 = in[ k ];
|
|
out32 = SKP_LSHIFT( in16, 13 ) - S[ 0 ];
|
|
out32 = SKP_RSHIFT_ROUND( out32, 13 );
|
|
|
|
for( d = 0; d < order - 1; d++ ) {
|
|
S[ d ] = SKP_SMLABB( S[ d + 1 ], in16, B[ d ] );
|
|
}
|
|
S[ order - 1 ] = SKP_SMULBB( in16, B[ order - 1 ] );
|
|
|
|
/* Limit */
|
|
out[ k ] = (SKP_int16)SKP_SAT16( out32 );
|
|
}
|
|
}
|
|
}
|
|
/* Variable order MA prediction error filter. */
|
|
/* Inverse filter of SKP_Silk_LPC_synthesis_filter */
|
|
void SKP_Silk_LPC_analysis_filter(
|
|
const SKP_int16 *in, /* I: Input signal */
|
|
const SKP_int16 *B, /* I: MA prediction coefficients, Q12 [order] */
|
|
SKP_int16 *S, /* I/O: State vector [order] */
|
|
SKP_int16 *out, /* O: Output signal */
|
|
const SKP_int32 len, /* I: Signal length */
|
|
const SKP_int32 Order /* I: Filter order */
|
|
)
|
|
{
|
|
SKP_int k, j, idx, Order_half = SKP_RSHIFT( Order, 1 );
|
|
SKP_int32 Btmp, B_align_Q12[ SigProc_MAX_ORDER_LPC >> 1 ], out32_Q12, out32;
|
|
SKP_int16 SA, SB;
|
|
/* Order must be even */
|
|
SKP_assert( 2 * Order_half == Order );
|
|
|
|
/* Combine two A_Q12 values and ensure 32-bit alignment */
|
|
for( k = 0; k < Order_half; k++ ) {
|
|
idx = SKP_SMULBB( 2, k );
|
|
B_align_Q12[ k ] = ( ( (SKP_int32)B[ idx ] ) & 0x0000ffff ) | SKP_LSHIFT( (SKP_int32)B[ idx + 1 ], 16 );
|
|
}
|
|
|
|
/* S[] values are in Q0 */
|
|
for( k = 0; k < len; k++ ) {
|
|
SA = S[ 0 ];
|
|
out32_Q12 = 0;
|
|
for( j = 0; j < ( Order_half - 1 ); j++ ) {
|
|
idx = SKP_SMULBB( 2, j ) + 1;
|
|
/* Multiply-add two prediction coefficients for each loop */
|
|
Btmp = B_align_Q12[ j ];
|
|
SB = S[ idx ];
|
|
S[ idx ] = SA;
|
|
out32_Q12 = SKP_SMLABB( out32_Q12, SA, Btmp );
|
|
out32_Q12 = SKP_SMLABT( out32_Q12, SB, Btmp );
|
|
SA = S[ idx + 1 ];
|
|
S[ idx + 1 ] = SB;
|
|
}
|
|
|
|
/* Unrolled loop: epilog */
|
|
Btmp = B_align_Q12[ Order_half - 1 ];
|
|
SB = S[ Order - 1 ];
|
|
S[ Order - 1 ] = SA;
|
|
out32_Q12 = SKP_SMLABB( out32_Q12, SA, Btmp );
|
|
out32_Q12 = SKP_SMLABT( out32_Q12, SB, Btmp );
|
|
|
|
/* Subtract prediction */
|
|
out32_Q12 = SKP_SUB_SAT32( SKP_LSHIFT( (SKP_int32)in[ k ], 12 ), out32_Q12 );
|
|
|
|
/* Scale to Q0 */
|
|
out32 = SKP_RSHIFT_ROUND( out32_Q12, 12 );
|
|
|
|
/* Saturate output */
|
|
out[ k ] = (SKP_int16)SKP_SAT16( out32 );
|
|
|
|
/* Move input line */
|
|
S[ 0 ] = in[ k ];
|
|
}
|
|
}
|